Rozwiąż równanie, pierwiastki wielokrotne:
2x⁵+3x⁴-2x-3=0
2x⁵+3x⁴-2x-3 = 0
2x⁵-2x+3x⁴-3 = 0
2x(x⁴-1)+3(x⁴-1) = 0
(2x+3)(x⁴-1) = 0
(2x+3)(x²-1)(x²+1) = 0
(2x+3)(x-1)(x+1)(x²+1) = 0
2x+3 = 0 v x-1 = 0 v x+1 = 0 v x²+1 = 0
2x = -3 |:2 v x = 1 v x = -1 v x² = -1 (sprzeczność)
x = -1,5 v x = 1 v x = -1
2 x^5 + 3 x^4 -2 x - 3 = 0
x^4 *( 2x + 3) - 1*(2x + 3) = 0
(x ^4 -1)*(2x + 3) = 0
(x^2 -1)*(x^2 + 1)*(2x +3) = 0
(x +1)*(x -1)*(2x + 3)*( x^2 + 1) = 0
x +1 = 0 lub x - 1 = 0 lub 2x + 3 = 0
x = -1 lub x = 1 lub x = -1,5
=================================
bo
x^2 + 1 > 0 dla dowolnej liczby rzeczywistej x
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2x⁵+3x⁴-2x-3 = 0
2x⁵-2x+3x⁴-3 = 0
2x(x⁴-1)+3(x⁴-1) = 0
(2x+3)(x⁴-1) = 0
(2x+3)(x²-1)(x²+1) = 0
(2x+3)(x-1)(x+1)(x²+1) = 0
2x+3 = 0 v x-1 = 0 v x+1 = 0 v x²+1 = 0
2x = -3 |:2 v x = 1 v x = -1 v x² = -1 (sprzeczność)
x = -1,5 v x = 1 v x = -1
2 x^5 + 3 x^4 -2 x - 3 = 0
x^4 *( 2x + 3) - 1*(2x + 3) = 0
(x ^4 -1)*(2x + 3) = 0
(x^2 -1)*(x^2 + 1)*(2x +3) = 0
(x +1)*(x -1)*(2x + 3)*( x^2 + 1) = 0
x +1 = 0 lub x - 1 = 0 lub 2x + 3 = 0
x = -1 lub x = 1 lub x = -1,5
=================================
bo
x^2 + 1 > 0 dla dowolnej liczby rzeczywistej x