Rozwiąż równanie. ( Pamiętaj o dziedzinie)
a.
b.
a)
2 /(x -3) + (4x)/(x + 2) = 1/3
D = R \ { -2 , 3 }
Sprowadzamy do wspólnego mianownika
[ 2*( x +2) + 4x*(x -3)]/[ (x -3)*( x + 2)] = 1/3
Mnozymy na krzyż
3*[ 2x + 4 + 4 x^2 - 12 x] = x^2 + 2 x - 3 x - 6
6 x + 12 + 12 x^2 - 36 x = x^2 - x - 6
11 x^2 - 29 x + 18 = 0
---------------------------
delta = (-29)^2 - 4*11*18 = 841 - 792 = 49
p (delty) = p(49) = 7
x = [ 29 - 7]/22 = 1 lub x = [ 29 + 7 ]/22 = 36/22 = 18/11
=======================================================
b)
2/( x^2 + x) - 1 /(x^2) = 1 / (6 x)
D = R \ { 0 }
Sprowadzam do wspólnego mianownika
[ 2 x^2 - (x^2 + x)] / [ x^2 *(x ^2 + x) ] = 1/(6x)
(x^2 - x)/[ x^4 + x^2 ] = 1 /( 6x)
Mnożę na krzyż
6 x^3 - 6 x^2 = x^4 + x^2
x^4 - 6 x^3 + 7 x^2 = 0
x^2 *( x^2 - 6 x + 7 ) = 0
x = 0 odpada
delta = (-6)^2 - 4*1*7 = 36 - 28 = 8 = 4*2
p(delty) = p(4*2) = 2 p(2)
x = [ 6 - 2 p(2)]/2 = 3 - p(2)
lub
x = [ 6 + 2 p(2)]/2 = 3 + p(2)
===========================
p(2) - pierwiastek kwadratowy z 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
2 /(x -3) + (4x)/(x + 2) = 1/3
D = R \ { -2 , 3 }
Sprowadzamy do wspólnego mianownika
[ 2*( x +2) + 4x*(x -3)]/[ (x -3)*( x + 2)] = 1/3
Mnozymy na krzyż
3*[ 2x + 4 + 4 x^2 - 12 x] = x^2 + 2 x - 3 x - 6
6 x + 12 + 12 x^2 - 36 x = x^2 - x - 6
11 x^2 - 29 x + 18 = 0
---------------------------
delta = (-29)^2 - 4*11*18 = 841 - 792 = 49
p (delty) = p(49) = 7
x = [ 29 - 7]/22 = 1 lub x = [ 29 + 7 ]/22 = 36/22 = 18/11
=======================================================
b)
2/( x^2 + x) - 1 /(x^2) = 1 / (6 x)
D = R \ { 0 }
Sprowadzam do wspólnego mianownika
[ 2 x^2 - (x^2 + x)] / [ x^2 *(x ^2 + x) ] = 1/(6x)
(x^2 - x)/[ x^4 + x^2 ] = 1 /( 6x)
Mnożę na krzyż
6 x^3 - 6 x^2 = x^4 + x^2
x^4 - 6 x^3 + 7 x^2 = 0
x^2 *( x^2 - 6 x + 7 ) = 0
x = 0 odpada
delta = (-6)^2 - 4*1*7 = 36 - 28 = 8 = 4*2
p(delty) = p(4*2) = 2 p(2)
x = [ 6 - 2 p(2)]/2 = 3 - p(2)
lub
x = [ 6 + 2 p(2)]/2 = 3 + p(2)
===========================
p(2) - pierwiastek kwadratowy z 2