Rozwiąż równanie 1+3+5+...+x = 81 to jest zadanie z ciągów
1+3+5+...+x = 81
1, 3, 5, ...., x
a1 = 1
r = a2 - a1 = 3 - 1 = 2
an = x
an = a1 + (n - 1) * r
x = 1 + (n - 1) * 2
x = 1 + 2n - 2
x = 2n - 1
x + 1 = 2n
n = (x +1) / 2
Sn = [(a1 + an) * n ] / 2 = [ (1 + x) * (x +1)/2 ]/2
81 = [ (1 + x) * (x +1)/2 ]/2
162 = (1 + x) * (x +1)/2
324 = (x +1)(x +1)
x² + 2x +1 = 324
x² + 2x - 323 = 0
Δ = 4 + 1292 =
√Δ = 36
x1 = (-2 - 36) / 2 = -38/2 = -19
x2 = (-2 + 36) / 2 = 34/2 = 17
n = (x +1) / 2 = (-19 + 1) / 2 = -9 ∉ D
n = (x +1) / 2 = (17 + 1) / 2 = 9 ∈ D
odp. x = 17
a₁=1
a₂=3
a₃=5
r=3-1=2
an=x
Sn=81
Sn=2a₁+(n-1)r/2 ×n
81=[2×1+(n-1)×2 ] /2 ×n
162=[2+2n-2]n
162=2n²
n²=162;2
n²=81
n=9 lub n=-9, ale skoro n∈N, więc n=9
a₉=x
a₉=a₁+8r
x=1+8×2=17
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1+3+5+...+x = 81
1, 3, 5, ...., x
a1 = 1
r = a2 - a1 = 3 - 1 = 2
an = x
an = a1 + (n - 1) * r
x = 1 + (n - 1) * 2
x = 1 + 2n - 2
x = 2n - 1
x + 1 = 2n
n = (x +1) / 2
Sn = [(a1 + an) * n ] / 2 = [ (1 + x) * (x +1)/2 ]/2
81 = [ (1 + x) * (x +1)/2 ]/2
162 = (1 + x) * (x +1)/2
324 = (x +1)(x +1)
x² + 2x +1 = 324
x² + 2x - 323 = 0
Δ = 4 + 1292 =
√Δ = 36
x1 = (-2 - 36) / 2 = -38/2 = -19
x2 = (-2 + 36) / 2 = 34/2 = 17
n = (x +1) / 2 = (-19 + 1) / 2 = -9 ∉ D
n = (x +1) / 2 = (17 + 1) / 2 = 9 ∈ D
odp. x = 17
a₁=1
a₂=3
a₃=5
r=3-1=2
an=x
Sn=81
Sn=2a₁+(n-1)r/2 ×n
81=[2×1+(n-1)×2 ] /2 ×n
162=[2+2n-2]n
162=2n²
n²=162;2
n²=81
n=9 lub n=-9, ale skoro n∈N, więc n=9
a₉=x
a₉=a₁+8r
x=1+8×2=17