Rozwiąż równania:
a) (x2-16)(x2 - 49) = 0
b) - 2x2 – 9x + 18=0
c) x3 + 2x2 – 3x = 0
d) x3 + 2x2 – 4x – 8 =0
e) (x2 – 1)(x2 + x – 10) = (x2 – 1)(x - 5)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) (x²-16)(x²-49) = 0
(x-4)(x+4)(x-7)(x+7) = 0 Przyrównujemy każdy czynnik do zera i wyznaczamy pierwiastki.
x-4=0 ∨ x+4=0 ∨ x-7=0 ∨ x+7=0
x=4 x=-4 x=7 x=-7
b) -2x² -9x +18 = 0 Δ=(-9)²-4·(-2)·18 = 81+144=225, √Δ=15
x₁=(9+15)/(-4) =24/(-4)= -6, x₂= (9-15)/(-4) =-6/(-4) = 3/2=1½
c) x³+2x²-3x =0
x(x²+2x-3) =0
x₁=0 ∨ x²+2x-3=0
Δ=4-4·(-3)=4+12=16, √Δ=4
x₂=(-2-4)/2=-6/2= -3 , x₃= (-2+4)/2= 2/2= 1
d) x³+2x²-4x-8 =0 Stosujemy met. grupowania wyrazów.
x²(x+2)-4(x+2) =0
(x+2)(x²-4) =0
(x+2)(x+2)(x-2) =0
(x+2)²(x-2) = 0
x+2=0 ∨ x-2=0
x=-2 x=2
e) (x²-1)(x²+x-10) = (x²-1)(x-5)
(x-1)(x+1)(x²+x-10) - (x-1)(x+1)(x-5) = 0
(x-1)(x+1) [x²+x-10-(x-5)] =0
(x-1)(x+1)(x²+x-10-x+5) = 0
(x-1)(x+1)(x²-5) =0
(x-1)(x+1)(x-√5)(x+√5) = 0
x-1=0 ∨ x+1=0 ∨ x-√5=0 ∨ x+√5=0
x₁=1 x₂=-1 x₃=√5 x₄=-√5