Rozwiąż równania i nierówności.
a)6x^2-x-2=0
b)(x+2)^2=2x=7
c)x^4-6x^2+5=0
d)x^4-6X^2+8=0
e)9-25x^2>0
f)-x^2-3X<0
g)(A-x)(5-X)<0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
6x² - x - 2 = 0
Δ = 1 - 4*6*( - 2)
Δ = 1 + 48 = 49
√Δ = √49 = 7
x₁ = (1 - 7)/12 ∨ x₂ = (1 + 7)/12
x₁ = - 6/12 ∨ x₂ = 8/12
x₁ = - 1/2 ∨ x₂ = 2/3
b)
(x + 2)² + 2x = 7
x² + 4x + 4 + 2x - 7 = 0
x² + 6x + - 3 = 0
Δ = 36 - 4*1*( - 3)
Δ = 36 + 12 = 48
√Δ = √48 = √(16*3) = 4√3
x₁ = (- 1 - 4√3)/2 ∨ x₂ = (1 + 4√3)/2
c)
x⁴ - 6x² + 5 = 0
(x²)² - 6x² + 5 = 0
Niech: x² = t
Wtedy:
t² - 6t + 5 = 0
t² - t - 5t + 5 = 0
t(t - 1) - 5(t - 1) = 0
(t - 1)(t - 5) = 0
t - 1 = 0 ∨ t - 5 = 0
t = 1 ∨ t = 5
Ale: t = x²,
więc:
x² = 1 ∨ x² = 5
x² - 1 = 0 ∨ x² - 5 = 0
(x - 1)(x + 1) = 0 ∨ (x - √5)(x + √5) = 0
x = - 1 ∨ x = 1 ∨ x = - √5 ∨ x = √5
d)
x⁴ - 6x² + 8 = 0
(x²)² - 6x² + 8 = 0
Niech: x² = t
Wtedy:
t² - 6t + 8 = 0
Δ = 36 - 32 = 4
√Δ = 2
x₁ = (6 - 2)/2 ∨ x₂ = (6 + 2)/2
x₁ = 4/2 ∨ x₂ = 8/2
x₁ = 2 ∨ x₂ = 4
e)
9 - 25x² > 0
- 25(x² - 9/25) > 0 / :( - 25)
(x² - 9/25) < 0
(x - 0,6)(x + 0,6) < 0
x ∈ ( - 0,6 ; 0,6)
f)
- x² - 3x < 0
- x(x + 3) < 0 / * ( - 1)
x(x + 3) > 0
x∈ ( - ∞ , - 3) U ( 0 , + ∞)
g)
(A - x)(5 - X) < 0
[ - (x - A)]*[ - ( x - 5)] < 0
(x - A)(x - 5) < 0
1)
A > 5
x ∈ ( - ∞ , 5) U ( A , + ∞)
2) A < 5
x ∈ ( - ∞ , A) U ( 5 , + ∞)