rozwiąż nierównosci
2,95
(x-3)²>(x-3)(2x+9) (x-4)²+(x-4)(x+2)>0
(2-x)(x+4)-(2-x)(1-2x)<0
2,96
a) -½(x+1)(x-3)≤0
b) 2(x+3)(x-5)>0
c)3(2-x)(x+4)≤0
d) -5(x-2)(1-x)≤0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2.95
2.96
2.95
a)
(x - 3)² > (x - 3)(2x + 9)
(x - 3)(x -3) - (x -3)(2x + 9) > 0
(x - 3)[x - 3 -(2x + 9)] > 0
(x - 3)(x - 3 - 2x - 9) > 0
(x - 3)(-x -12) > 0
x₁ = -12
x₂ = 3
a = -1 < 0, ramiona paraboli skierowane w dół
x ∈ (-12; 3)
b)
(x - 4)² + (x -4)(x + 2) > 0
(x - 4)(x - 4) + (x - 4)(x +2) > 0
(x - 4)(x - 4 + x + 2) > 0
(x - 4)(2x - 2) > 0
2(x - 4)(x - 1) > 0
x₁ = 1
x₂ = 4
a < 0, ramiona paraboli skierowane w dół
x ∈ (-∞;1) U (4; +∞)
c)
(2 - x)(x + 4) - (2 - x)(1 -2x) < 0
(2 - x)[x + 4 - (1 - 2x)] < 0
(2 - x)(x + 4 - 1 + 2x) < 0
(2 - x)(3x + 3) < 0
3(2 - x)(x + 1) < 0
x₁ = -1
x₂ = 2
a < 0, ramiona paraboli skierowane w dół
x ∈ (-∞; -1) U (2; +∞)
2.96
a)
-½(x + 1)(x - 3) ≤ 0
x₁ = -1
x₂ = 3
a < 0, ramiona paraboli skierowane w dół
x ∈ <-1; 3>
b)
2(x + 3)(x - 5) > 0
x₁ = -3
x₂ = 5
a > 0, ramiona paraboli skierowane w górę
x ∈ (-∞; -3) U (5; +∞)
c)
3(2 - x)(x + 4) ≤ 0
x₁ = -4
x₂ = 2
a < 0, ramiona paraboli skierowane w dół
x ∈ (-∞; -4> U <2; +∞)
d)
-5(x - 2)(1 - x) ≤ 0
x₁ = 1
x₂ = 2
a > 0, ramiona paraboli skierowane w gre
x ∈ <1; 2>