rozwiąż nierówności
a) x² + 4x – 12 < 0
b) ½x² - 3x + 5 <0
c) (x-5) (x-2) ≥2x (x-8)
d) - x² +9x – 20 ≤ 0
Δ=4²-4*1*(-12)=16+48=64
√Δ=8
x∈(-6,2)
Δ=(-3)²-4*½*5=9-10=-1 < 0
x∈R
x²-2x-5x+10 ≥ 2x²-16x
x²-7x+10 ≥ 2x² -16x
-x² +9x +10 ≥0
Δ=9²-4*(-1)*10=81+400=481
√Δ=√481
Δ=9²-4*(-1)*(-20)=81-80=1
√Δ=1
Δ=b²-4ac
x₁=[-b-√Δ]/2a
x₂=[-b+√Δ]/2a
x₀=-b/2a
a]
x²+4x-12<0
Δ=16+48=64
x₁=[-4-8]/2=-6
x₂=[-4+8]/2=2
x∈(-6;2)
b]
½x²-3x+5<0
Δ=9-10=-1
x∈Ф
c]
(x-5)(x-2)≥2x(x-8)
x²-2x-5x+10-2x²+16x=0
-x²+9x+10=0
Δ=81+40=121
√Δ=11
x₁=[-9-11]/-2=10
x₂=[-9+11]/-2=-1
x∈< -1;10>
d]
-x²+9x-20≤0
Δ=81-80=1
x₁=[=-9-1]/-2=5
x₂=[-9+1]/-2=4
x∈(-∞;4> ∨ <5;+∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) x² + 4x – 12 < 0
Δ=4²-4*1*(-12)=16+48=64
√Δ=8
x∈(-6,2)
b) ½x² - 3x + 5 <0
Δ=(-3)²-4*½*5=9-10=-1 < 0
x∈R
c) (x-5) (x-2) ≥2x (x-8)
x²-2x-5x+10 ≥ 2x²-16x
x²-7x+10 ≥ 2x² -16x
-x² +9x +10 ≥0
Δ=9²-4*(-1)*10=81+400=481
√Δ=√481
d) - x² +9x – 20 ≤ 0
Δ=9²-4*(-1)*(-20)=81-80=1
√Δ=1
Δ=b²-4ac
x₁=[-b-√Δ]/2a
x₂=[-b+√Δ]/2a
x₀=-b/2a
a]
x²+4x-12<0
Δ=16+48=64
√Δ=8
x₁=[-4-8]/2=-6
x₂=[-4+8]/2=2
x∈(-6;2)
b]
½x²-3x+5<0
Δ=9-10=-1
x∈Ф
c]
(x-5)(x-2)≥2x(x-8)
x²-2x-5x+10-2x²+16x=0
-x²+9x+10=0
Δ=81+40=121
√Δ=11
x₁=[-9-11]/-2=10
x₂=[-9+11]/-2=-1
x∈< -1;10>
d]
-x²+9x-20≤0
Δ=81-80=1
x₁=[=-9-1]/-2=5
x₂=[-9+1]/-2=4
x∈(-∞;4> ∨ <5;+∞)