dla jakiej wartości parametru „a” wielomian W(x)= 2x³+ (a+ 1) x² - 12 x-16 jest podzielny przez dwumian (x-2)
z.1
y = - 2 x^2 + 5 x + 3
a = -2 , b = 5, c = 3
p = - b/(2a) = -5/ (-4) = 5/4
delta = b^2 - 4ac = 5^2 - 4*(-2)*3 = 25 + 24 = 49
p(delty) = 7
q = - delta/ ( 4a) = - 49/(-8) = 49/8 = 6 1/8
Postac kanoniczna:
y = a*(x - p)^2 + q
czyli
y = -2*(x - 5/4)^2 + 49/8
===========================
x1 = [ - b - p(delty)]/(2a) = [ - 5 - 7]/(-4) = 3
x2 = [ - b + p(delty)]/(2a) = [ - 5 + 7]/(-4) = - 1/2
Postac iloczynowa:
y = a*(x -x1)*(x - x2)
y = -2*(x - 3)*(x + 1/2)
======================
z.2
W(x) = 2 x^3 + ( a + 1) x^2 - 12 x - 16
Mamy
W(2) = 2*2^3 + (a+1)*2^2 - 12*2 - 16
W(2) = 16 + 4 a + 4 - 24 - 16 = 4a - 20
W( 2) = 0 <=> 4a - 20 = 0 <=> a = 5
Wielomian W jest podzielny przez dwumian ( x - 2) , dla a = 5
=========================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
y = - 2 x^2 + 5 x + 3
a = -2 , b = 5, c = 3
p = - b/(2a) = -5/ (-4) = 5/4
delta = b^2 - 4ac = 5^2 - 4*(-2)*3 = 25 + 24 = 49
p(delty) = 7
q = - delta/ ( 4a) = - 49/(-8) = 49/8 = 6 1/8
Postac kanoniczna:
y = a*(x - p)^2 + q
czyli
y = -2*(x - 5/4)^2 + 49/8
===========================
x1 = [ - b - p(delty)]/(2a) = [ - 5 - 7]/(-4) = 3
x2 = [ - b + p(delty)]/(2a) = [ - 5 + 7]/(-4) = - 1/2
Postac iloczynowa:
y = a*(x -x1)*(x - x2)
czyli
y = -2*(x - 3)*(x + 1/2)
======================
z.2
W(x) = 2 x^3 + ( a + 1) x^2 - 12 x - 16
Mamy
W(2) = 2*2^3 + (a+1)*2^2 - 12*2 - 16
W(2) = 16 + 4 a + 4 - 24 - 16 = 4a - 20
W( 2) = 0 <=> 4a - 20 = 0 <=> a = 5
Wielomian W jest podzielny przez dwumian ( x - 2) , dla a = 5
=========================================================