rozwiąż nierówność: (x-1)³ ≥ x(x+2)² - (x-1)²
(x - 1)³ ≥ x(x + 2)² - (x - 1)²
x³ - 3x² + 3x - 1 ≥ x(x² + 4x + 4) - (x² - 2x + 1)
x³ - 3x² + 3x - 1 ≥ x³ + 4x² + 4x - x² + 2x - 1
x³ - 3x² + 3x - x³ - 4x² - 4x + x² - 2x ≥ - 1 + 1
- 6x² - 3x ≥ 0
-3x( 2x + 1) ≥ 0 /:(-3)
x(2x + 1) ≤ 0
0 -1/2
+++ +++++ ramiona paraboli do góry
-----o---------o-------->
-1/2 ---- 0
odp. x ∈ <-1/2 ; 0>
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(x - 1)³ ≥ x(x + 2)² - (x - 1)²
x³ - 3x² + 3x - 1 ≥ x(x² + 4x + 4) - (x² - 2x + 1)
x³ - 3x² + 3x - 1 ≥ x³ + 4x² + 4x - x² + 2x - 1
x³ - 3x² + 3x - x³ - 4x² - 4x + x² - 2x ≥ - 1 + 1
- 6x² - 3x ≥ 0
-3x( 2x + 1) ≥ 0 /:(-3)
x(2x + 1) ≤ 0
0 -1/2
+++ +++++ ramiona paraboli do góry
-----o---------o-------->
-1/2 ---- 0
odp. x ∈ <-1/2 ; 0>