Rozłóż wielomian w na czynniki W(x)=(20x^3-28x^2+8x)(x^4=6x^3+2x^2+12x) prosze o dokładne wytłumaczenie
wyłączamy z pierwszego nawiasu wspólny czynnik "4x" zaś z drugiego "x"
zajmiemy sie teraz pierwszym nawiasem i policzymy pierwiastki równania kwadratowego wyznaczając tzw DELTĘ:
zajmiemy się teraz drugim nawiasem i zastosujemy tu metodę grupowania wyrazów:
Zatem, wielomian W(x) mozna przedstawic w postaci:
W(x) = (20x³ - 28x² + 8x)(x⁴ + 6x³ + 2x² + 12x)
W(x) = 4x·(5x² - 7x + 2)·x·(x³ + 6x² + 2x + 12)
W(x) = 4x²·(5x² - 7x + 2)(x³ + 6x² + 2x + 12)
1-szy nawias:
5x² - 7x + 2 = 0
Δ = b² - 4ac = (-7)² - 4*5*2 = 49 - 40 = 9
√Δ = 3
x₁ = (-b-√Δ)/2a = (7-3)/10 = 2/5 = 0,4
x₂ = (-b+√Δ)/2a = (7+3)/10 = 1
5x² - 7x + 2 = 5(x - 0,4)(x-1)
2-gi nawias:
x³ + 6x² + 2x + 12 = 0
x²(x+6) + 2(x+6) = 0
(x+6)(x² +2) = 0
x³ + 6x² + 2x +12 = (x+6)(x² +2)
Czyli :
W(x) = 4x²·5(x - 0,4)(x -1)(x + 6)(x² + 2)
W(x) = 20x²·(x - 0,4)(x - 1)(x + 6)(x² + 2)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
wyłączamy z pierwszego nawiasu wspólny czynnik "4x" zaś z drugiego "x"
zajmiemy sie teraz pierwszym nawiasem i policzymy pierwiastki równania kwadratowego wyznaczając tzw DELTĘ:
zajmiemy się teraz drugim nawiasem i zastosujemy tu metodę grupowania wyrazów:
Zatem, wielomian W(x) mozna przedstawic w postaci:
W(x) = (20x³ - 28x² + 8x)(x⁴ + 6x³ + 2x² + 12x)
W(x) = 4x·(5x² - 7x + 2)·x·(x³ + 6x² + 2x + 12)
W(x) = 4x²·(5x² - 7x + 2)(x³ + 6x² + 2x + 12)
1-szy nawias:
5x² - 7x + 2 = 0
Δ = b² - 4ac = (-7)² - 4*5*2 = 49 - 40 = 9
√Δ = 3
x₁ = (-b-√Δ)/2a = (7-3)/10 = 2/5 = 0,4
x₂ = (-b+√Δ)/2a = (7+3)/10 = 1
5x² - 7x + 2 = 5(x - 0,4)(x-1)
2-gi nawias:
x³ + 6x² + 2x + 12 = 0
x²(x+6) + 2(x+6) = 0
(x+6)(x² +2) = 0
x³ + 6x² + 2x +12 = (x+6)(x² +2)
Czyli :
W(x) = 4x²·5(x - 0,4)(x -1)(x + 6)(x² + 2)
W(x) = 20x²·(x - 0,4)(x - 1)(x + 6)(x² + 2)