punkt S=(2,-1) jest środkiem okręgu opisanego na trójkącie ABC. wierzchołek A ma wspołrzędne (-3,-1) a bok BC jest zawarty w prostej x+7y-20=0. oblicz współrzędne wierzchołków B i C.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
S = ( 2; -1) oraz A = ( -3: -1)
Mamy
r = I AS I
oraz r^2 = I AS I^2
zatem r^2 = (2 -(-3))^2 + (-1 -(-1))^2 = 5^2 + 0^2 = 25
r = 5
====
Punkty B oraz C leżą na prostej o równaniu
x +7y - 20 = 0
x = 20 - 7y
----------------
Niech B = ( x; y) = ( 20 - 7y; y)
S = ( 2 ; -1)
Musi być
I BS I ^2 = r^2 = 25
( 2 - (20 - 7y))^2 + (-1 - y)^2 = ( -18 + 7y)^2 + ( -1 - y)^2 =
= 324 - 252 y + 49 y^2 + 1 + 2y + y^2 = 325 - 250y + 50 y^2
zatem
50 y^2 - 250 y + 325 = 25
50 y^2 - 250 y + 300 = 0 / : 50
y^2 - 5 y + 6 = 0
delta = 25 -4*1*6 = 25 - 24 = 1
y1 = [ 5 -1]/2 = 4/2 = 2
y2 = [ 5 + 1]/2 = 6/2 = 3
zatem
x1 = 20 - 7*2 = 20 - 14 = 6
x2 = 20 - 7*3 = 20 - 21 = -1
Odp.
B = (6; 2) oraz C = ( -1; 3)
================================