Proszę o pomoc!!potrzebuje rozwiązania tych zadań na jutro gdzieś do godz.10 Zadania w załączniku
1.
a)
f(x) = (2x+4)/(3x+12)
3x+12 = 0
3x = -12 /:3
x = -4
D= R \ {-4}
b)
g(x) = (x^2 + 5x - 4)/(x^3 - 2x^2 - 4x + 8)
x^3 - 2x^2 - 4x + 8 = 0
x^2*(x-2) - 4(x-2) = 0
(x^2 - 4)(x-2) = 0
(x+2)(x-2)(x-2) = 0
x = -2 v x = 2
D = R \ {-2,2}
2.
f(x) = (x^2 - 6x + 8)/(x^2 - 4)
x^2 - 4 = 0
(x+2)(x-2) = 0
x^2 - 6x + 8 = 0
D(delta) = b^2 - 4ac = 36-32 = 4, VD = 2
x1 = (-b-VD)/2a = (6-2)/2 = 2
x2 = (-b+VD)/2a = (6+2)/2 = 4
x1 = 2 nie należy do dziedziny,zatem:
MZ: 4
3.
F(x) = (2x+3)/(x+2), dla x = V5 - 1
Z: x =/= -2
F(V5-1) = [2(V5-1)+3]/(V5-1+2) = (2V5-2+3)/(V5+1) = (2V5+1)/(V5+1) *(V5-1)/(V5-1) =
= (2V5+1)(V5-1)/4 = (10-2V5+V5-1)/4 = (9-V5)/4
4.
MZ: 1, -2
D = R \ {-5, 0,3}
np.:
f(x) = (x-1)(x+2)/(x+5)(x-0,3)
f(x) = (x^2 + x - 2)/(x^2 + 4,7x - 1,5)
5.
(3x+2)/(x+1) = (x-2)/(x-1) =
x+1 = 0 => x = -1
x-1 = 0 => x = 1
D = R \ {-1,1}
= (x-1)(3x+2) = (x+1)(x-2)
3x^2 + 2x - 3x - 2 = x^2 - 2x + x - 2
2x^2 = 0
x = 0
1 + 1/(x-2) = 3/(x-1)
x-2 = 0 => x = 2
D = R \ {1,2}
(x-2+1)/(x-2) = 3/(x-1)
(x-1)/(x-2) = 3x/(x-2)
(x-1)^2 = 3(x-2)
x^2 - 2x +1 = 3x - 6
x^2 - 5x + 7 = 0
D = 25 -28 = -3
D < 0
a = 1 > 0 ramiona paraboli skierowane w gó
x e (-oo,1) u (2,+oo)
c)
(x-5)(4+2x)/(5x^2 +1) = 0
5x^2 +1 > 0
D = R
(x-5)(4+2x) = 0
x1 = 5
=====
lub
4+2x = 0 /:2
x = -2
x = -2, v x = 5
6.
(x+1)/2 * 10x/(x^2 + x) =
x^2 + x = 0
x(x+1) = 0
x = 0 v x = -1
D = R \ {-1,0}
= 5x(x+1)/x(x+1) = 5
x^5/(2x-6) : x^3/(x^2 - 6x + 9) =
2x-6 = 0 /:2
x = 3
x^2 - 6x + 9 = 0
D(delta) = 36-36 = 0
x = 6/2 = 3
D = R \ {3}
= x^5/(2x-6) *(x^2 - 6x + 9)/x^3 =x^2/2(x-3) * (x-3)^2 = x^2(x-3)/2 = (x^3 - 3x^2)/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
a)
f(x) = (2x+4)/(3x+12)
3x+12 = 0
3x = -12 /:3
x = -4
D= R \ {-4}
b)
g(x) = (x^2 + 5x - 4)/(x^3 - 2x^2 - 4x + 8)
x^3 - 2x^2 - 4x + 8 = 0
x^2*(x-2) - 4(x-2) = 0
(x^2 - 4)(x-2) = 0
(x+2)(x-2)(x-2) = 0
x = -2 v x = 2
D = R \ {-2,2}
2.
f(x) = (x^2 - 6x + 8)/(x^2 - 4)
x^2 - 4 = 0
(x+2)(x-2) = 0
D = R \ {-2,2}
x^2 - 6x + 8 = 0
D(delta) = b^2 - 4ac = 36-32 = 4, VD = 2
x1 = (-b-VD)/2a = (6-2)/2 = 2
x2 = (-b+VD)/2a = (6+2)/2 = 4
x1 = 2 nie należy do dziedziny,zatem:
MZ: 4
3.
F(x) = (2x+3)/(x+2), dla x = V5 - 1
Z: x =/= -2
F(V5-1) = [2(V5-1)+3]/(V5-1+2) = (2V5-2+3)/(V5+1) = (2V5+1)/(V5+1) *(V5-1)/(V5-1) =
= (2V5+1)(V5-1)/4 = (10-2V5+V5-1)/4 = (9-V5)/4
4.
MZ: 1, -2
D = R \ {-5, 0,3}
np.:
f(x) = (x-1)(x+2)/(x+5)(x-0,3)
f(x) = (x^2 + x - 2)/(x^2 + 4,7x - 1,5)
5.
a)
(3x+2)/(x+1) = (x-2)/(x-1) =
x+1 = 0 => x = -1
x-1 = 0 => x = 1
D = R \ {-1,1}
= (x-1)(3x+2) = (x+1)(x-2)
3x^2 + 2x - 3x - 2 = x^2 - 2x + x - 2
2x^2 = 0
x = 0
b)
1 + 1/(x-2) = 3/(x-1)
x-1 = 0 => x = 1
x-2 = 0 => x = 2
D = R \ {1,2}
(x-2+1)/(x-2) = 3/(x-1)
(x-1)/(x-2) = 3x/(x-2)
(x-1)^2 = 3(x-2)
x^2 - 2x +1 = 3x - 6
x^2 - 5x + 7 = 0
D = 25 -28 = -3
D < 0
a = 1 > 0 ramiona paraboli skierowane w gó
x e (-oo,1) u (2,+oo)
c)
(x-5)(4+2x)/(5x^2 +1) = 0
5x^2 +1 > 0
D = R
(x-5)(4+2x) = 0
x1 = 5
=====
lub
4+2x = 0 /:2
x = -2
=====
x = -2, v x = 5
6.
a)
(x+1)/2 * 10x/(x^2 + x) =
x^2 + x = 0
x(x+1) = 0
x = 0 v x = -1
D = R \ {-1,0}
= 5x(x+1)/x(x+1) = 5
b)
x^5/(2x-6) : x^3/(x^2 - 6x + 9) =
2x-6 = 0 /:2
x = 3
x^2 - 6x + 9 = 0
D(delta) = 36-36 = 0
x = 6/2 = 3
D = R \ {3}
= x^5/(2x-6) *(x^2 - 6x + 9)/x^3 =x^2/2(x-3) * (x-3)^2 = x^2(x-3)/2 = (x^3 - 3x^2)/2