" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2n/5 > 10/8
2n > 50/8
n > 50/16
n > 3 ⅛
Odp: Od 4 wyrazu ciągu.
2. an = n² + 3n - 10
a(n+1) = (n+1)² + 3(n+1) - 10 = n²+2n+1+3n+3-10 = n²+5n-6
a(n+1) - an = n²+3n-10 - n²-5n+6 = -2n-4 = (-)
malejący.
3. an = 5n+3
S = 6272
a₁ = 5+3 = 8
6272 = n(8+5n+3)/2
12544 = n(11+5n)
12544 = 11n + 5n²
5n² + 11n - 12544 = 0
Δ = 121 - 4*5*(-12544) = 251001
n₁ = (-11 - 501)/2*5 <---- odpada, bo n musi być dodatnie
n₂ = (-11+501)/10 = 49
4. (a₁+4r) - (a₁+r) = -6
a₁ + a₁+3r = 0
a₁+4r-a₁-r = -6
2a₁+3r = 0
3r = -6
2a₁ - 6 = 0
a₁ = 3
r = -2
an = 3 - 2(n-1)
an = 3 - 2n + 2
an = 5-2n
5. a² = 4*9
9² = ab
a² = 36
a = 6
81 = 6b
b = 81/6
b = 13½
6. a(n+1) = 3*5^(n+1-1) = 3*5^n
an = 3*5^(n-1)
n(n+1)/an = (3*5^n)/(3*5^(n-1)) = 5^n/ [(5^n)/5] = 5 * 5^n/ 5^n = 5
jest geometryczny