Podaj wzór funkcji liniowej spełniającej dla każdej liczby rzeczywistej x warunki:
f(1)=2
f(x+1)=f(x-1)+1
Niech f(x) = ax + b
zatem
f(1) = a + b = 2
------------------------
f(x+1) =a(x+1) + b = ax + a + b
f(x-1) = a(x-1) + b = ax - a + b
Ma być
f(x+1) = f(x-1) +1
-------------------------
czyli
ax +a +b = ax -a + b +1 --> 2a = 1 --> a = 1/2 = 0,5
0,5 + b = 2 --> b = 1,5
Odp.
f(x) = 0,5 x + 1,5
==================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Niech f(x) = ax + b
zatem
f(1) = a + b = 2
------------------------
f(x+1) =a(x+1) + b = ax + a + b
f(x-1) = a(x-1) + b = ax - a + b
Ma być
f(x+1) = f(x-1) +1
-------------------------
czyli
ax +a +b = ax -a + b +1 --> 2a = 1 --> a = 1/2 = 0,5
zatem
0,5 + b = 2 --> b = 1,5
Odp.
f(x) = 0,5 x + 1,5
==================