21.
ax² + bx + c = 0
x² + x - 2 = 0
a = 1
b = 1
c = - 2
x1 + x2 = - b/a
x1 + x2 = - 1/1
x1 + x2 = - 1
x1x2 = c/a
x1x2 = - 2/1
x1x2 = - 2
1/x1 + 1/x2 = (x1 + x2)/x1x2
1/x1 + 1/x2 = - 1/- 2
1/x1 + 1/x2 = ½ (C)
22.
2x² + 6x - 10 = 0
x1 + x2 = - 6/2
x1 + x2 = - 3
x1x2 = - 10/2
x1x2 = - 5
- 2/x1 - 2/x2 = (- 2x1 - 2x2)/x1x2
- 2/x1 - 2/x2 = - 2(x1 + x2)/x1x2
- 2/x1 - 2/x2 = - 2(- 3)/- 5
- 2/x1 - 2/x2 = - 6/5 (A)
23.
- 3x² + 6x + 9 = 0
x1 + x2 = - 6/- 3
x1 + x2 = 2
x1x2 = 9/- 3
x1x2 = - 3
x1/x2 + x2/x1 = (x1² + x2²)/x1x2
x1/x2 + x2/x1 = ((x1 + x2)² - 2x1x2)/x1x2
x1/x2 + x2/x1 = ((2)² - 2(- 3))/- 3
x1/x2 + x2/x1 = (4 + 6)/- 3
x1/x2 + x2/x1 = - 10/3 (A)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
21.
ax² + bx + c = 0
x² + x - 2 = 0
a = 1
b = 1
c = - 2
x1 + x2 = - b/a
x1 + x2 = - 1/1
x1 + x2 = - 1
x1x2 = c/a
x1x2 = - 2/1
x1x2 = - 2
1/x1 + 1/x2 = (x1 + x2)/x1x2
1/x1 + 1/x2 = - 1/- 2
1/x1 + 1/x2 = ½ (C)
22.
2x² + 6x - 10 = 0
x1 + x2 = - b/a
x1 + x2 = - 6/2
x1 + x2 = - 3
x1x2 = c/a
x1x2 = - 10/2
x1x2 = - 5
- 2/x1 - 2/x2 = (- 2x1 - 2x2)/x1x2
- 2/x1 - 2/x2 = - 2(x1 + x2)/x1x2
- 2/x1 - 2/x2 = - 2(- 3)/- 5
- 2/x1 - 2/x2 = - 6/5 (A)
23.
- 3x² + 6x + 9 = 0
x1 + x2 = - b/a
x1 + x2 = - 6/- 3
x1 + x2 = 2
x1x2 = c/a
x1x2 = 9/- 3
x1x2 = - 3
x1/x2 + x2/x1 = (x1² + x2²)/x1x2
x1/x2 + x2/x1 = ((x1 + x2)² - 2x1x2)/x1x2
x1/x2 + x2/x1 = ((2)² - 2(- 3))/- 3
x1/x2 + x2/x1 = (4 + 6)/- 3
x1/x2 + x2/x1 = - 10/3 (A)