" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
O(x₀,y₀) środek okręgu
równanie okręgu
(x–x₀)² + (y–y₀)²=R²
R² = (5√2)² = 50
{(6-x₀)²+(-1-y₀)² = 50
{(2-x₀)²+(1-y₀)² = 50
25 + 25 = 50
(6-x₀)² + (-1-y₀)² = 50
(6-x₀)² = 25 6-x₀ = 5 x₀ = 1 6-x₀ = -5 x₀ = 11
(-1-y₀)² = 25 -1-y₀ = 5 y₀ = -6 -1-y₀ = -5 y₀ = 4
(2-x₀)²+(1-y₀)² = (2-1₀)²+(1-(-6))² = 1 + 49 = 50 => O(1;-6) pasuje
(2-x₀)²+(1-y₀)² = (2-11)²+(1-4)² = 9²+ 3² = 90 => O(11;4) nie pasuje
25 + 25 = 50
(2-x₀)² + (1-y₀)² = 50
(2-x₀)² = 25 2-x₀ = 5 x₀ = -3 2-x₀ =-5 x₀ = 7
(1-y₀)² = 25 1-y₀ = 5 y₀ = -4 1-y₀ =-5 y₀ = 6
(6-x₀)² + (-1-y₀)² = (6-(-3))² + (-1-(-4))² = 9²+3² = 90 => O(-3;-4) nie pasuje
(6-x₀)² + (-1-y₀)² = (6-7)²+(-1-6)² = (-1)²+(-7)² = 50 => O(7;6) pasuje
środeki okręgu:
O(1;-6) i O(7;6)
równanie okręgu:
(x–x₀)² + (y–y₀)² = R²
1. (x–1)² + (y+6)² = (5√2)² ⇔ (x–1)² + (y+6)² = 50
2. (x–7)² + (y-6)² = (5√2)² ⇔ (x–7)² + (y-6)² = 50