Oblicz wartość wyrażenia
√57-40√2 -√57+40√2(40√2 jest w obu wypadkach pod podwójnym pierwiastkiem)
57 - 40 p(2) = ( 5 - 4 p(2))^2 oraz 57 + 40 p(2) = ( 5 + 4 p(2))^2
57 - 40 p(2) > 0 i 57 + 40 p(2) > 0
zatem
p [ 57 - 40 p(2)] - p[ 57 + 40 p(2)] =
= p [ ( 5 - 4 p(2))^2 ] - p[ ( 5 + 4 p(2))^2 ] =
= I 5 - 4 p(2) I - I 5 + 4 p(2) I =
= 4 p(2) - 5 - ( 5 + 4 p(2) ) = - 10
===============================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
57 - 40 p(2) = ( 5 - 4 p(2))^2 oraz 57 + 40 p(2) = ( 5 + 4 p(2))^2
57 - 40 p(2) > 0 i 57 + 40 p(2) > 0
zatem
p [ 57 - 40 p(2)] - p[ 57 + 40 p(2)] =
= p [ ( 5 - 4 p(2))^2 ] - p[ ( 5 + 4 p(2))^2 ] =
= I 5 - 4 p(2) I - I 5 + 4 p(2) I =
= 4 p(2) - 5 - ( 5 + 4 p(2) ) = - 10
===============================