Oblicz pole P i obwód L wielokąta przedstawionego na rysunku.
a
pole
P=1/2ah=1/2*3V2*3V2
P=9 j2
tw pitagorasa
(3V2)^2+(3V2)^2=x^2
x^2=18+18
x=6
obw=3V2+3V2+6
obw=6+6V2
b
trójkąt ABD jest równoramienny, więc BD = AD = BC = 4V2
z pitagorasa
AD^2+BD^2=AB^2
AB^2=64
AB=8 = DC
h^2+h^2=(4V2)^2
h^2=16
h=4
obw = ab+bc+cd+ad = 8+4V2+8+4V2 = 16+8V2
obw=16+8V2
P=AB*h= 8* 4
P=32 j2
c
sin60=CF/BC
V3/2=CF/6
CF = 3V3 = DE = AE
cos60=BF/BC
1/2=BF/6
BF=3
AE^2+DE^2=AD^2
(3V3)^2+(3V3)^2=AD^2
AD^2=54
AD=3V6
AB=AE+3+FB = 3V3+6
obw = AB+BC+CD+AD = 3V3+6+6+3+3V6
obw=15+3V3+3V6
poel
P=(a+b)/2 *h = (AB+CD)/2 * DE = (3V3+6+3)/2 *3V3
P=27/2+27/2V3 j2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a
pole
P=1/2ah=1/2*3V2*3V2
P=9 j2
tw pitagorasa
(3V2)^2+(3V2)^2=x^2
x^2=18+18
x=6
obw=3V2+3V2+6
obw=6+6V2
b
trójkąt ABD jest równoramienny, więc BD = AD = BC = 4V2
z pitagorasa
AD^2+BD^2=AB^2
AB^2=64
AB=8 = DC
z pitagorasa
h^2+h^2=(4V2)^2
h^2=16
h=4
obw = ab+bc+cd+ad = 8+4V2+8+4V2 = 16+8V2
obw=16+8V2
pole
P=AB*h= 8* 4
P=32 j2
c
sin60=CF/BC
V3/2=CF/6
CF = 3V3 = DE = AE
cos60=BF/BC
1/2=BF/6
BF=3
z pitagorasa
AE^2+DE^2=AD^2
(3V3)^2+(3V3)^2=AD^2
AD^2=54
AD=3V6
AB=AE+3+FB = 3V3+6
obw = AB+BC+CD+AD = 3V3+6+6+3+3V6
obw=15+3V3+3V6
poel
P=(a+b)/2 *h = (AB+CD)/2 * DE = (3V3+6+3)/2 *3V3
P=27/2+27/2V3 j2