Oblicz n, dla którego liczby: {2n+1; 4n+3; 7n+2} tworzą ciąg arytmetyczny.
4n + 3 - (2n + 1) = 7n + 2 - (4n + 3)
4n + 3 - 2n - 1 = 7n + 2 - 4n - 3
2n + 2 = 3n - 1
- n = - 3
n = 3
przyjmujac a1= 2n+1
a2= 4n+3
a3= 7n+2 mamy wzor ze 2a2=a1+a3, czyli
8n+6=9n+3
3=n
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
4n + 3 - (2n + 1) = 7n + 2 - (4n + 3)
4n + 3 - 2n - 1 = 7n + 2 - 4n - 3
2n + 2 = 3n - 1
- n = - 3
n = 3
przyjmujac a1= 2n+1
a2= 4n+3
a3= 7n+2 mamy wzor ze 2a2=a1+a3, czyli
8n+6=9n+3
3=n