2x - długość boku kwadratu wpisanego w trójkąt równoboczny
a - długośc boku trójkąta
h - wysokośc trójkąta
zatem
h = a p(3)/2
[ a/2 - x]/(a/2) = 2x / h
[ 1 - (2x)/a] = 2x /[ a p(3)/2 ]
[ 1 - (2x)/a ] = 4x/ ( a p(3)]
1 - ( 2 p(3) x]/[a p(3) = 4x/ [ a p(3)]
4x / [a p(3)] + [ 2 p(3) x]/[a p(3)] = 1
[ 4x + 2 p(3) x]/ [a p(3)] = 1
[ x *(4 + 2p(3))]/ [a p(3)] = 1
x = [ a p(3)]/[ 4 + 2 p(3)]
b = 2x = [ 2a p(3)]/[ 4 + 2 p(3)] = [ a p(3)]/[2 + p(3)}
Pole kwadratu
P = b^2 = [ a p(3)]^2 / [ 2 + p(3)}^2 = [ 3 a^2]/[ 4 + 4 p(3) +3] =
= [ 3 a^2 ]/[ 7 + 4 p(3) ]
=========================
p(3) - pierwiastek kwadratowy z 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2x - długość boku kwadratu wpisanego w trójkąt równoboczny
a - długośc boku trójkąta
h - wysokośc trójkąta
zatem
h = a p(3)/2
[ a/2 - x]/(a/2) = 2x / h
[ 1 - (2x)/a] = 2x /[ a p(3)/2 ]
[ 1 - (2x)/a ] = 4x/ ( a p(3)]
1 - ( 2 p(3) x]/[a p(3) = 4x/ [ a p(3)]
4x / [a p(3)] + [ 2 p(3) x]/[a p(3)] = 1
[ 4x + 2 p(3) x]/ [a p(3)] = 1
[ x *(4 + 2p(3))]/ [a p(3)] = 1
x = [ a p(3)]/[ 4 + 2 p(3)]
zatem
b = 2x = [ 2a p(3)]/[ 4 + 2 p(3)] = [ a p(3)]/[2 + p(3)}
Pole kwadratu
P = b^2 = [ a p(3)]^2 / [ 2 + p(3)}^2 = [ 3 a^2]/[ 4 + 4 p(3) +3] =
= [ 3 a^2 ]/[ 7 + 4 p(3) ]
=========================
p(3) - pierwiastek kwadratowy z 3