Liczby tg60, cos45, x są kolejnymi wyrazami ciągu geometrycznego. wyznacz x.
tg60 =p(3)
cos 45 = p(2)/2
zatem
p(3), p(2)/2, x ciąg geometryczny
[p(2)/2] : p(3) = x : [ p(2)/2]
[ p(2)/2]^2 = x *p(3)
1/2 = x* p(3)
x = 1/[ 2*p(3)] = p(3)/6
Odp. x = p(3)/6
========================
(a1, a2, a3) – ciąg geometryczny
a1 Tg60 = √3
a2 Cos45 = √2/2
a3 x = ?
a2 = a1 * q
√2/2 = √3 * q / √3
√2/2 * 1/ √3 = q
√2 / 2√3 = q
√6 / 6 = q
a3 = a1 * q2
x = √3 * (√6 / 6) 2
x = √3 * 6/36
x = √3 * 1/6
x = √3/6
(√3, √2/2, √3/6) – ciąg geometryczny
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
tg60 =p(3)
cos 45 = p(2)/2
zatem
p(3), p(2)/2, x ciąg geometryczny
[p(2)/2] : p(3) = x : [ p(2)/2]
[ p(2)/2]^2 = x *p(3)
1/2 = x* p(3)
x = 1/[ 2*p(3)] = p(3)/6
Odp. x = p(3)/6
========================
(a1, a2, a3) – ciąg geometryczny
a1 Tg60 = √3
a2 Cos45 = √2/2
a3 x = ?
a2 = a1 * q
√2/2 = √3 * q / √3
√2/2 * 1/ √3 = q
√2 / 2√3 = q
√6 / 6 = q
a3 = a1 * q2
x = √3 * (√6 / 6) 2
x = √3 * 6/36
x = √3 * 1/6
x = √3/6
(√3, √2/2, √3/6) – ciąg geometryczny