Lewa strona równania jest sumą wszystkich wyrazów skończonego ciągu arytmetycznego. Rozwiąż to równanie.
-7 + 1 + 9 + ... + (x+1) = 119
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Mamy
a1 = - 7
r = 1 - (- 7) = 1 + 7 = 8
an = x + 1
-------------------
ale
an = a1 + (n-1)*r = -7 + ( n-1)*8 = -7 + 8n - 8 = 8n - 15
czyli
x + 1 = 8n - 15
============
Suma ciągu arytmetycznego
Sn = 0,5*[a1 = an]*n = 0,5*[ -7 + 8n - 15]*n = 0,5*[8n - 22]*n
zatem
0,5*[8n - 22]*n = 119 / * 2
[ 8n - 22]*n = 238
8 n^2 - 22 n - 238 = 0
===================
delta = (-22)^2 - 4*8*(-238) = 484 + 7616 = 8100
p ( delty ) = p( 8 100) = 90
n = [ 22 - 90]/16 < 0 odpada
n = [ 22 + 90]/16 = 112/16 = 7
n = 7
==========
zatem
x+1 = 8n - 15 = 8*7 - 15 = 56 - 15 = 41
x = 41 - 1 = 40
Odp. x = 40
====================