Uraikan pemfaktorannya menjadi x^4+(a+c)x^3+(b+ac+d)x^2+(ad+bc)x+bd = x^4-7x^2+1 Bandingkan koefisien dari variabel yg bersesuaian: a+c=0 sama saja dgn a = -c b+ac+d=-7 ad+bc=0 => bc-cd = 0 => bc = cd => b = d bd=1 akibatnya b = 1 dan d = 1, sehingga a+b+c+d=(-c)+1+c+1=2. (Jawaban E)
Verified answer
(x^2 + ax + b)(x^2 + cx + d)= x^4 + cx^3 + dx^2 + ax^3 + acx^2 + adx + bx^2 + bcx + bd
= x^4 + (c + a)x^3 + (d + ac + b)x^2 + (ad + bc)x + bd
= x^4 - 7x^2 + 1
Koefisien x^3
c + a = 0 => a = -c
Koefisien x^2
d + ac + b = -7
Koefisien x
ad + bc = 0 => -cd + bc = 0 => bc = cd => b = d
Konstanta
bd = 1 => d.d = 1 => d = 1
b = d = 1
a + b + c + d = -c + 1 + c + 1 = 2
Verified answer
Uraikan pemfaktorannya menjadix^4+(a+c)x^3+(b+ac+d)x^2+(ad+bc)x+bd = x^4-7x^2+1
Bandingkan koefisien dari variabel yg bersesuaian:
a+c=0 sama saja dgn a = -c
b+ac+d=-7
ad+bc=0 => bc-cd = 0 => bc = cd => b = d
bd=1
akibatnya b = 1 dan d = 1,
sehingga a+b+c+d=(-c)+1+c+1=2.
(Jawaban E)