Funkcja wykładnicza:
3^{x+1}+9^{x}=108
Proszę o pełne rozwiązanie.
3^4 + 3^ 2x = 108
3^2x = 108 - 81
3^2x= 27
3^2x= 3^3
2x=3
x=3/2 = 1,5
3³⁺¹ + 9^x = 108
9^x = 108 - 3^4
9^x = 108 -81
9^x = 27
(3^2)^x = 3^3
3^2x = 3^3
2x = 3 /:2
x = 3/2
x = 1½
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3^4 + 3^ 2x = 108
3^2x = 108 - 81
3^2x= 27
3^2x= 3^3
2x=3
x=3/2 = 1,5
3³⁺¹ + 9^x = 108
9^x = 108 - 3^4
9^x = 108 -81
9^x = 27
(3^2)^x = 3^3
3^2x = 3^3
2x = 3 /:2
x = 3/2
x = 1½