Dla jakiej wartości parametru a wielomiany u i w są rowne:
u(x)=(ax−1)(ax+2) w(x)=9x^2−3x−2
u(x) = (ax−1)(ax+2) = a²x² + 2ax - ax -2 = a²x² + ax - 2
w(x) = 9x² − 3x − 2
a²x² + ax - 2 = 9x² − 3x − 2
a²x² + ax = 9x² − 3x
a²x²= 9x² ∧ ax = -3x
{a = 3 ∨ a = -3} ∧ a = -3
a = -3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
u(x) = (ax−1)(ax+2) = a²x² + 2ax - ax -2 = a²x² + ax - 2
w(x) = 9x² − 3x − 2
a²x² + ax - 2 = 9x² − 3x − 2
a²x² + ax = 9x² − 3x
a²x²= 9x² ∧ ax = -3x
{a = 3 ∨ a = -3} ∧ a = -3
a = -3