Dla jakich wartości parametru m równanie -x^2+(2m-1)x+m=0 ma dwa pierwiastki które różnią się co najmniej o 4?
-x²+(2m-1)x+m=0 a=-1, b=2m-1, c=m Δ=b²-4ac=(2m-1)²-4·(-1)·m= 4m²-4m+1+4m
Δ=4m²+1 √Δ=√(4m²+1)
x₂=x₁-4
(-b-√Δ)/2a=(-b+√Δ)/2a-4 |·2a
(-b-√Δ)=(-b+√Δ)-8a
-b-√Δ+b-√Δ+8a=0
-2√Δ+8a=0 |:-2
√Δ+4a=0
√(4m²+1)-4=0
√(4m²+1)=4
√(4m²+1)=√16
4m²+1=16
4m²=15
m²=15/4
m=± √15/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
-x²+(2m-1)x+m=0 a=-1, b=2m-1, c=m Δ=b²-4ac=(2m-1)²-4·(-1)·m= 4m²-4m+1+4m
Δ=4m²+1 √Δ=√(4m²+1)
x₂=x₁-4
(-b-√Δ)/2a=(-b+√Δ)/2a-4 |·2a
(-b-√Δ)=(-b+√Δ)-8a
-b-√Δ+b-√Δ+8a=0
-2√Δ+8a=0 |:-2
√Δ+4a=0
√(4m²+1)-4=0
√(4m²+1)=4
√(4m²+1)=√16
4m²+1=16
4m²=15
m²=15/4
m=± √15/2