Dana jesr funkcja kwadratowa w postaci iloczynowej f(x)= -2(x-3)(x+2), x € R a) Napisz wzór funkcji f w postaci kanonicznej oraz ogólnej. b) Naszkicuj wykres funkcji f c) Określ zbiór wartości funkcji f, przedziały monotniczności oraz zbiór tych argumentów dla których funkcja f osiąga wartości niedodatnie
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
f(x) = -2(x-3)(x+2)
a)
f(x) = -2(x-3)(x+2) = (-2x+6)(x+2) = -2x² - 4x + 6x + 12 = -2x² + 2x + 12 <-- postać ogólna
Δ = 2² - 4*(-2)*12 = 4 + 96 = 100
p = -b/2a
q = -Δ/4a
p = -2/2*(-2) = 0,5
q = -100/4*(-2) = 12,5
f(x) = -2(x-0,5)² + 12,5 <-- postać kanoniczna
b)
w załączniku
c)
Z postaci kanonicznej łatwo odczytać współrzędne wierzchołka paraboli:
x = p = 0,5
y = q = 12,5
ZW: (-oo; 12,5>
f(x) rośnie <=> x ∈ (-oo; 0,5>
f(x) maleje <=> x ∈ <0,5; +oo)
f(x) < 0 <=> x ∈ (-oo; 2) U (3; +oo) (na podstawie wykresu)
----------------------------------------------------------------------------------------------------
Litterarum radices amarae sunt, fructus iucundiores
Pozdrawiam :)