El sistema de coordenadas cartesianas es formado por dos rectas; una horizontal y otra vertical, en el cual ambos se intersecan en el punto 0 de cada recta. Las dos rectas son llamados ejes.
Estos dos ejes dividen el plano cartesiano en 4 secciones llamadas cuadrantes. Estas cuadrantes son numeradas en forma “contra el reloj” del I al IV de la siguiente forma:
Cada punto en el plano se puede identificar por un par de números llamado par ordenado. El primer numero del par, que se llama la abcisa; está en la recta horizontal, el eje de x. El segundo numero del par se llama la ordenada que se encuentra en la recta vertical, el eje de y.
(1, 4)
Eje de x Eje de y Abcisa Ordenada
Los números negativos y positivos se colocan de la siguiente manera:
El sistema de coordenadas es usada además de localización de puntos en el plano, para graficar el conjunto de soluciones de ecuaciones de dos variables como:
y = 4x + 8 y = x2 + 2x + 5 3y = 5x + 8
Digamos que queremos hacer la gráfica la ecuación lineal y = 3x + 7 . Hay que asignar valores a la x y resolverlo para encontrar el valor de y. Con los resultados se formaran los puntos de la gráfica de la siguiente manera:
Ej. Encontrar los puntos de la ecuación y = 3x + 7. Vamos a utilizar la siguiente tabla para organizar el trabajo. Le daremos a la x , los valores de -2, -1, 0, 1 y 2
xy-2 -1 0 1 2
y = 3x + 7 y = 3(-2) + 7 [Cuando la x es -2, la y es 1] y = -6 + 7 y = 1
y = 3x + 7 y = 3(-1) + 7 [Cuando la x es -1, la y es 4] y = -3 + 7 y =4
y = 3x + 7 y = 3(0) + 7 [Cuando la x es 0, la y es 7] y = 0 + 7 y = 7
y = 3x + 7
y = 3(1) + 7
y = 3 + 7
y = 10 [Cuando la x es 1, la y es 10]
y = 3x + 7
y = 3(2) + 7
y = 6 + 7
y = 13 [Cuando la x es 2, la y es 13]
Xy-21-1407110213
Y asi se resuelve con cada valor que le quieras dar a la x de la tabla. Es por esto que x se llama la variable independiente, ya que le puedes dar cualquier valor de su dominio, que son los valores permitidos para la x. En el caso de está ecuacion lineal, x puede ser cualquier número real, pero en nuestro estudio se encontrarán ecuaciones que tienen restricciones en su dominio.
Veamos como queda la gráfica de la ecuación y = 3x + 7. (Ver Parte
Para verificar que un punto sea solución de la ecuación hay que hacer lo siguiente:
1. Sustituir la abcisa por x. 2. Sustituir la ordenada por la y. ( siempre recordar la forma {x,y} ) 3. Resolver la ecuación. 4. Si resulta ser igualdad, entonces el punto es solución de la ecuación.
Ejemplo 1 : ¿ Es ( 3,11) una solución a la ecuación y = 2x + 5?
y = 2x + 5 11 = 2(3) + 5 < Sustituir los puntos por x y y> 11 = 6 + 5 < Resolver> 11 = 11 < Hay igualdad>
Quiere decir que el punto (3,11) es una solución a la ecuación.
Ejemplo 2: ¿ Es (2,8) una solución de la ecuación y = 2x + 5?
y = 2x + 5 8 = 2(2) + 5 < Se sustituyo la x y la y> 8 = 4 + 5 < Resolver> 8 = 9 <FALSO, no es solución>
Sistemas de Coordenadas Cartesianas
El sistema de coordenadas cartesianas es formado por dos rectas; una horizontal y otra vertical, en el cual ambos se intersecan en el punto 0 de cada recta. Las dos rectas son llamados ejes.
Estos dos ejes dividen el plano cartesiano en 4 secciones llamadas cuadrantes. Estas cuadrantes son numeradas en forma “contra el reloj” del I al IV de la siguiente forma:
Cada punto en el plano se puede identificar por un par de números llamado par ordenado. El primer numero del par, que se llama la abcisa; está en la recta horizontal, el eje de x. El segundo numero del par se llama la ordenada que se encuentra en la recta vertical, el eje de y.
(1, 4)
Eje de x Eje de y
Abcisa Ordenada
Los números negativos y positivos se colocan de la siguiente manera:
El sistema de coordenadas es usada además de localización de puntos en el plano, para graficar el conjunto de soluciones de ecuaciones de dos variables como:
y = 4x + 8
y = x2 + 2x + 5
3y = 5x + 8
Digamos que queremos hacer la gráfica la ecuación lineal y = 3x + 7 . Hay que asignar valores a la x y resolverlo para encontrar el valor de y. Con los resultados se formaran los puntos de la gráfica de la siguiente manera:
xy-2 -1 0 1 2Ej. Encontrar los puntos de la ecuación y = 3x + 7. Vamos a utilizar la siguiente tabla para organizar el trabajo. Le daremos a la x , los valores de -2, -1, 0, 1 y 2
y = 3x + 7
y = 3(-2) + 7 [Cuando la x es -2, la y es 1]
y = -6 + 7
y = 1
y = 3x + 7
y = 3(-1) + 7 [Cuando la x es -1, la y es 4]
y = -3 + 7
y = 4
y = 3x + 7
y = 3(0) + 7 [Cuando la x es 0, la y es 7]
y = 0 + 7
y = 7
y = 3x + 7
y = 3(1) + 7
y = 3 + 7
y = 10 [Cuando la x es 1, la y es 10]
y = 3x + 7
y = 3(2) + 7
y = 6 + 7
y = 13 [Cuando la x es 2, la y es 13]
Y asi se resuelve con cada valor que le quieras dar a la x de la tabla. Es por esto que x se llama la variable independiente, ya que le puedes dar cualquier valor de su dominio, que son los valores permitidos para la x. En el caso de está ecuacion lineal, x puede ser cualquier número real, pero en nuestro estudio se encontrarán ecuaciones que tienen restricciones en su dominio.
Veamos como queda la gráfica de la ecuación y = 3x + 7. (Ver Parte
Para verificar que un punto sea solución de la ecuación hay que hacer lo siguiente:
1. Sustituir la abcisa por x.
2. Sustituir la ordenada por la y. ( siempre recordar la forma {x,y} )
3. Resolver la ecuación.
4. Si resulta ser igualdad, entonces el punto es solución de la ecuación.
Ejemplo 1 : ¿ Es ( 3,11) una solución a la ecuación y = 2x + 5?
y = 2x + 5
11 = 2(3) + 5 < Sustituir los puntos por x y y>
11 = 6 + 5 < Resolver>
11 = 11 < Hay igualdad>
Quiere decir que el punto (3,11) es una solución a la ecuación.
Ejemplo 2: ¿ Es (2,8) una solución de la ecuación y = 2x + 5?
y = 2x + 5
8 = 2(2) + 5 < Se sustituyo la x y la y>
8 = 4 + 5 < Resolver>
8 = 9 <FALSO, no es solución>
El punto (2,8) no es solución.