gunakan Sn barisan arit dgn a = 4027 dan b = -4 serta Un = 3 Un = a + (n-1)b 3 = 4027 + (n-1)-4 3 = 4027 - 4n + 4 4n = 4031 - 3 4n = 4028 n = 4028 / 4 = 1007
Sn = n / 2 (a+Un) maka 2014²-2013²+2012²-2011²+....+4²-3²+2²-1² = (2014+2013)(2014-2013) + (2012+2011)(2012-2011) +...+(4+3)(4-3)+(2+1)(2-1) = 4027 x 1 + 4023x1 + ... + 7x1 + 3 x 1 = 4027 + 4023 +... + 7 + 3 = 1007/2 (4027+3) = 1007/2 x 4030 = 1007 x 2015 = 2029105 = 2 x 10⁶
= (2014 + 2013) (2014 - 2013) + (2012 + 2011) (2012 - 2011) + (2010 + 2009) (2010 - 2009) + ...... (4 + 3) (4 - 3) + (2 + 1) (2 - 1)
= (4027 x 1) + (4023 x 1) + (4019 x 1) + ..... + (7 x 1) + (3 x 1)
= 4027 + 4023 + 4019 + ..... + 7 + 3
a = 3
b = 4
Un = 4027
* Mencari nilai n
Un = a + (n - 1)b
4027 = 3 + (n - 1)4
4027 - 3 = (n - 1)4
4024 = (n - 1)4
1006 = n - 1
n = 1007
* Mencari Sn
Sn = n/2 (a + Un)
S₁₀₀₇ = 1007/2 (3 + 4027)
= 1007/2 (4030)
=1007 x 2015
= 2029105
= 2 x 10⁶
Jadi, bentuk yang paling mendekati adalah 2 x 10⁶ (Jawaban C)
= (2014+2013)(2014-2013) + (2012+2011)(2012-2011) +...+(4+3)(4-3)+(2+1)(2-1)
= 4027 x 1 + 4023x1 + ... + 7x1 + 3 x 1
= 4027 + 4023 +... + 7 + 3
gunakan Sn barisan arit dgn a = 4027 dan b = -4 serta Un = 3
Un = a + (n-1)b
3 = 4027 + (n-1)-4
3 = 4027 - 4n + 4
4n = 4031 - 3
4n = 4028
n = 4028 / 4
= 1007
Sn = n / 2 (a+Un)
maka
2014²-2013²+2012²-2011²+....+4²-3²+2²-1²
= (2014+2013)(2014-2013) + (2012+2011)(2012-2011) +...+(4+3)(4-3)+(2+1)(2-1)
= 4027 x 1 + 4023x1 + ... + 7x1 + 3 x 1
= 4027 + 4023 +... + 7 + 3
= 1007/2 (4027+3)
= 1007/2 x 4030
= 1007 x 2015
= 2029105
= 2 x 10⁶