4. x² - 2x - 4 = 0 akar2nya a dan b maka pers kuadrat yg akar2nya a/b dan b/a adalah: x² - (a/b + b/a)x + (a/b)(b/a) = 0 x² - (((a + b)² - 2ab)/ab) x + 1 = 0 x² - ((1 - 2(-4))/1)x + 1 = 0 x² - 9x + 1 = 0
5. (x - 3)² + (y - 4)² = 5 ordinat = y = 5 >> (x - 3)² + 1 = 5 (x - 3)² = 4 x - 3 = 2 atau x - 3 = -2 x = 5 x = 1 m = y/x utk x = 5 dan y = 5 maka m = 5/5 = 1 utk x = 1 dan y = 5 maka m = 1/5 r = √5 masukan ke rumus: y - b = m(x - a) ± r√(1 + m²)
= 6x² - 4x [2 - 4]
= (6(16) - 16) - (24 - 8))
= 80 - 16
= 64 satuan luas
2. cari batasnya dulu:
x² - 2 = -x
x² + x - 2 = 0
(x + 2)(x - 1) = 0
V = π∫((-x)² - (x² - 2)²) dx batas bawah = -2 dan batas atas = 1
3. ₁∫² (2x + 1)² dx
= 1/(2(2+1)) * (2x + 1)³ bts dr 1 - 2
= (1/6)(2x + 1)³ bts dr 1 - 2
= (1/6)((5³ - 1³)
= (1/6)(124)
= 62/3
4. x² - 2x - 4 = 0
akar2nya a dan b
maka pers kuadrat yg akar2nya a/b dan b/a adalah:
x² - (a/b + b/a)x + (a/b)(b/a) = 0
x² - (((a + b)² - 2ab)/ab) x + 1 = 0
x² - ((1 - 2(-4))/1)x + 1 = 0
x² - 9x + 1 = 0
5. (x - 3)² + (y - 4)² = 5
ordinat = y = 5 >> (x - 3)² + 1 = 5
(x - 3)² = 4
x - 3 = 2 atau x - 3 = -2
x = 5 x = 1
m = y/x
utk x = 5 dan y = 5 maka m = 5/5 = 1
utk x = 1 dan y = 5 maka m = 1/5
r = √5
masukan ke rumus:
y - b = m(x - a) ± r√(1 + m²)