a) równanie
b) nierówność
a)
2^(3x) * 7^(x -2) = 4^(x + 1)
2^(3x) * 7^(x - 2) = (2^2)^(x +1)
2^(3x) * 7^( x-2) = 2^(2x + 2) / : 2^(2x + 2)
2^( 3x - 2x -2) * 7^( x -2) = 1
2^(x - 2)* 7^(x-2) = 1
(2 *7)^(x -2) = 1
14^(x - 2) = 1
x - 2 = 0
x = 2
========
b)
(1/2)^ I x + 3 I > (1/2) p(2)
(1/2)^I x + 3 I > p(2)/2
(1/2)^ I x + 3 I > 1/ p(2)
(1/2)^ I x + 3 I > (1/2) ^(1/2)
I x + 3 I < 1/2
x + 3 < 1/2 i x + 3 > -1/2
x < -2,5 i x > -3,5
Odp. -3,5 < x < -2,5
=======================
( 1/2)^ I x + 3 I > 1/( 2 p(2))
2 p(2) = 2^(3/2)
zatem
1 / (2 p(2)) = 2 ^( - 3/2) = [ 2 ^(-1)]^(3/2) = (1/2)^(3/2)
czyli
(1/2) ^ I x + 3 I > (1/2)^ (3/2)
I x + 3 I < 3/2
I x + 3 I < 1,5
x + 3 < 1,5 i x + 3 > - 1,5
x < - 1,5 i x > - 4,5
Odp. - 4,5 < x < -1,5
===========================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
2^(3x) * 7^(x -2) = 4^(x + 1)
2^(3x) * 7^(x - 2) = (2^2)^(x +1)
2^(3x) * 7^( x-2) = 2^(2x + 2) / : 2^(2x + 2)
2^( 3x - 2x -2) * 7^( x -2) = 1
2^(x - 2)* 7^(x-2) = 1
(2 *7)^(x -2) = 1
14^(x - 2) = 1
x - 2 = 0
x = 2
========
b)
(1/2)^ I x + 3 I > (1/2) p(2)
(1/2)^I x + 3 I > p(2)/2
(1/2)^ I x + 3 I > 1/ p(2)
(1/2)^ I x + 3 I > (1/2) ^(1/2)
I x + 3 I < 1/2
x + 3 < 1/2 i x + 3 > -1/2
x < -2,5 i x > -3,5
Odp. -3,5 < x < -2,5
=======================
b)
( 1/2)^ I x + 3 I > 1/( 2 p(2))
2 p(2) = 2^(3/2)
zatem
1 / (2 p(2)) = 2 ^( - 3/2) = [ 2 ^(-1)]^(3/2) = (1/2)^(3/2)
czyli
(1/2) ^ I x + 3 I > (1/2)^ (3/2)
I x + 3 I < 3/2
I x + 3 I < 1,5
x + 3 < 1,5 i x + 3 > - 1,5
x < - 1,5 i x > - 4,5
Odp. - 4,5 < x < -1,5
===========================