a) ( √128 + √50) · √2
b) √72+3√18+√8
c) √121-√162+√200
d) (4√3+√12-√75) · 3
e) (√2-3√3)2( do kwadratu)
f) (√5+3√2)·(√5-3√2)
P.S √ ( pierwiastek )
Proszę o szybkie rozwiązanie zadania.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) ( √128 + √50) · √2 =
= [ √(64*2) + √(25*2) ]*√2 =
= [ 8√2 + 5√2 ]*√2 =
= [ 13√2]*√2 =
= 13*(√2)² =
= 13*2 =
= 26
b) √72+3√18+√8
= √(36*2) + 3*√(9*2) + √(4*2) =
= 6√2 +3*3√2+ 2√2 =
= 6√2 +9√2 +2√2 =
= 17√2
=
c) √121-√162+√200=
= 11 - √(81*2) + √(100*2) =
= 11 - 9√2 + 10√2 =
= 11 + √2
d) (4√3+√12-√75) · 3 =
= [ 4√3 + √(4*3) - √(25*3) ] *3 =
= [ 4√3 +2√3 - 5√3 ]*3 =
= √3 *3 =
= 3√3
e) (√2-3√3)2( do kwadratu) =
= (√2)² -2*√2*3√3 + (3√3)² =
= 2 - 6√(2*3) + 9*3 =
= 2 - 6√6 +27 =
= 29 - 6√6
f) (√5+3√2)·(√5-3√2)=
Stosuję wzór skróconego mnożenia :
(a + b)( a - b) = a² - b²
= (√5)² - (3√2)² =
= 5 - 9*2 =
= 5 - 18 =
= - 13