F.Wymierna
skróć ułamki podaj konieczne założenia:
a)x³-1/2x²-2
b)3x²+6x+3/x³+1
c)2x³-16/x²+2x+4
d)x²+5x+25/x³-125
e)x²-x-6/x²-4
f)36+3x-3x²/x²+6x+9
g)-2x²-14x+16/3x²+15x-72
h)2x²-3x-9/4x²-11x-3
i)6x²+13x-5/9x²+3x-2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
(x³-1)/(2x²-2)
Zał. 2x²-2 ≠ 0
2(x²-1) ≠ 0 |:2
x²-1 ≠ 0
(x-1)(x+1)≠0
x-1≠0 ∧ x+1≠0
x≠1 ∧ x≠-1
(x³-1)/(2x²-2) = (x-1)(x²+x+1) / 2(x²-1) = (x-1)(x²+x+1) / 2(x-1)(x+1) = (x²+x+1) / 2(x+1)
b)
(3x²+6x+3)/(x³+1)
Zał. x³+1≠ 0
(x+1)(x²-x+1) ≠ 0
x+1 ≠ 0 ∧ x²-x+1 ≠ 0
x ≠ - 1
(3x²+6x+3)/(x³+1) = 3(x²+2x+1) / (x+1)(x²-x+1) = 3(x+1)² / (x+1)(x²-x+1) = 3(x+1) / (x²-x+1)
c)
(2x³-16)/(x²+2x+4)
Zał. x²+2x+4≠0
Δ=4-16=-8<0 (nie ma miejsc zerowych)
x∈R
(2x³-16)/(x²+2x+4) = 2(x³-8)/(x²+2x+4) = 2(x³-2³)/(x²+2x+4) = 2(x-2)(x²+2x+4)/(x²+2x+4) = 2(x-2)
d)
(x²+5x+25)/(x³-125)
Zał. x³-125≠0
x³-5³ ≠ 0
(x-5)(x²+5x+25) ≠ 0
x-5 ≠ 0 ∧ x²+5x+25 ≠ 0
x ≠ 5
(x²+5x+25)/(x³-125) = (x²+5x+25)/(x-5)(x²+5x+25) = 1/(x- 5)
e)
(x²-x-6)/(x²-4)
Zał. x²-4≠0
(x-2)(x+2) ≠ 0
x-2 ≠ 0 ∧ x+2 ≠ 0
x ≠ 2 ∧ x ≠ - 2
(x²-x-6)/(x²-4) = (x+2)(x-3) /(x-2)(x+2) = (x-3)/(x-2)
_________
x²-x-6
Δ = 1 + 24 = 25; √Δ = 5
x₁ = (1-5) : (2·1) = -4:2 = -2
x₂ = (1+5) : (2·1) = 6:2 = 3
x²-x-6 = (x+2)(x-3)
f)
(36+3x-3x²)/(x²+6x+9)
Zał. x²+6x+9 ≠ 0
(x+3)² ≠ 0
x+3 ≠ 0
x ≠ -3
(36+3x-3x²)/(x²+6x+9) = -3(x²-x-12)/(x+3)² = -3(x+3)(x-4)/(x+3)² = -3(x-4)/(x+3)
______
x²-x-12
Δ = 1+48=49; √Δ = 7
x₁ = (1-7):(2·1) = -6 : 2 = -3
x₂ = (1+7):(2·1) = 8 : 2 = 4
x²-x-12 = (x+3)(x-4)
g)
(-2x²-14x+16)/(3x²+15x-72)
Zał. 3x²+15x-72≠0
3(x²+5x-24) ≠ 0
x²+5x-24 ≠ 0
Δ = 25+96=121; √Δ = 11
x₁ = (-5-11):(2·1) = -16 : 2 = -8
x₂ = (-5+11):(2·1) = 6 : 2 = 3
x ≠ - 8 ∧ x ≠ 3
3x²+15x-72 = 3(x+8)(x-3)
(-2x²-14x+16)/(3x²+15x-72) = -2(x+8)(x-1) / 3(x+8)(x-3) = -2(x-1) / 3(x-3)
_______
-2x²-14x+16 = -2(x²+7x-8)
x²+7x-8
Δ = 49+32 = 81; √Δ = 9
x₁ = (-7-9):(2·1) = -16 : 2 = -8
x₂ = (-7+9):(2·1) = 2 : 2 = 1
-2x²-14x+16 = -2(x+8)(x-1)
h)
(2x²-3x-9)/(4x²-11x-3)
Zał. 4x²-11x-3≠0
Δ = 121+48=169; √Δ = 13
x₁ = (11-13):(2·4) = -2 : 8 = -¼
x₂ = (11+13):(2·4) = 24 : 8 = 3
x ≠ -¼ ∧ x ≠ 3
4x²-11x-3 = 4(x+¼)(x-3) = (4x+1)(x-3)
(2x²-3x-9)/(4x²-11x-3) = (2x+3)(x-3) /(4x+1)(x-3) = (2x+3)/(4x+1)
________
2x²-3x-9
Δ = 9+72=81; √Δ =9
x₁ = (3-9):(2·2) = -6 : 4 = - 1,5
x₂ = (3+9):(2·2) = 12 : 4 = 3
2x²-3x-9 = 2(x+1,5)(x-3) = (2x+3)(x-3)
i)
(6x²+13x-5)/(9x²+3x-2)
Zał. 9x²+3x-2 ≠ 0
Δ = 9+72=81; √Δ = 9
x₁ = (-3-9):(2·9) = -12 : 18 = - ⅔
x₂ = (-3+9):(2·9) = 6 : 18 = ⅓
9x²+3x-2 = 9(x+⅔)(x-⅓) = (3x+2)(3x-1)
(6x²+13x-5)/(9x²+3x-2) = (2x+5)(3x-1) / (3x+2)(3x-1) = (2x+5)/(3x+2)
_____
6x²+13x-5
Δ = 169+120=289; √Δ = 17
x₁ = (-13-17):(2·6) = -30 : 12 = - 2,5
x₂ = (-13+17):(2·6) = 4 : 12 = ⅓
6x²+13x-5 = 6(x+2,5)(x-⅓) = (2x+5)(3x-1)