Wyznacz wartości funkcji trygometrycznych wiedząc że tg α= 3/7
tg alfa = 3/7
tg alfa = y/x zatem y = 3 , x = 7
oraz r^2 = x^2 + y^2 = 7^2 + 3^2 = 49 + 9 = 58
r = p( 58)
--------------
sin alfa = y/r = 3/ p(58) = ( 3/58) *p(58)
cos alfa = x/r = 7/ p(58) = ( 7/58)* p(58)
ctg alfa = 1/ tg alfa = 7/3 = 2 1/3
================================
p( 58) - pierwiastek kwadratowyz 58
tgα=sinα/cosα
sin²α+cos²α=1
cosα=√[1-sin²α]
3/7=sinα/√[1-sin²α] /²
9/49=sin²α/(1-sin²α)
49sin²α=9-9sin²α
58sin²α=9
sin²α=9/58
sinα=3/√58=3√58/58
3/7=3√58/58:cos α
3cosα=21√58/58
cosα=7√58/58
ctgα=1/tgα=7/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
tg alfa = 3/7
tg alfa = y/x zatem y = 3 , x = 7
oraz r^2 = x^2 + y^2 = 7^2 + 3^2 = 49 + 9 = 58
r = p( 58)
--------------
sin alfa = y/r = 3/ p(58) = ( 3/58) *p(58)
cos alfa = x/r = 7/ p(58) = ( 7/58)* p(58)
ctg alfa = 1/ tg alfa = 7/3 = 2 1/3
================================
p( 58) - pierwiastek kwadratowyz 58
tgα=sinα/cosα
sin²α+cos²α=1
cosα=√[1-sin²α]
3/7=sinα/√[1-sin²α] /²
9/49=sin²α/(1-sin²α)
49sin²α=9-9sin²α
58sin²α=9
sin²α=9/58
sinα=3/√58=3√58/58
3/7=3√58/58:cos α
3cosα=21√58/58
cosα=7√58/58
ctgα=1/tgα=7/3