Proste równania wyładnicze
a)3^[x+2] x 9^[3x-1] = 27^[x+4] to w nawiasach kwadratowych znajduje się na miejscu potęgi
b) (0,5)^[x^2] x 2^[2x+2] = 1/64
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
mam nadzieję że pomogłem, liczę na naj:P
a)
3^[x+2] * 9^[3x - 1] = 27^[x + 4]
3^[x+2] * ( 3^2)^[3x - 1] = (3*3)^[x + 4]
3^[x+2] * 3^[6x - 2] = 3^[3x + 12]
3^[7x] = 3^[3x + 12]
7x = 3x + 12
4x = 12
x = 3
======
b)
(0,5)^[x^2] * 2^[2x + 2] = 1/64
( 1/2)^[x^2] * 2^[2x + 2] = 1/64
[ 2^(-1)]^[x^2] * 2^[2x + 2] = 1/64
2^[ -x^2] * 2^[2x + 2] = 1/64
2^[ -x^2 +2x + 2] = 2 ^[ - 6]
- x^2 + 2x + 2 = - 6
-x^2 + 2x + 8 = 0
---------------------
delta = 2^2 - 4*(-1)*8 = 4 + 32 = 36
p(delty) = 6
x = [ -2 - 6]/(-2) = -8/(-2) = 4
lub
x = [ -2 + 6]/(-2) = 4/(-2) = - 2
Odp. x = -2 lub x = 4
==================================