układem równań: sin α/cos α=tg α sin²α+cos²α=1 sin α=3/4cos α (3/4cos α)²+cos²α=1 sin α=3/4cos α 9/16cos²α+cos²α=1 sin α=3/4cos α 25/9cos²α=1 sin α=3/4cos α cos²α=9/25 sin α=3/4cos α cos α=√9/25 sin α=3/4cos α cos α=3/5 sin α=3/5×3/4 sin α=9/20 ctg=4/3
układem równań:
sin α/cos α=tg α
sin²α+cos²α=1
sin α=3/4cos α
(3/4cos α)²+cos²α=1
sin α=3/4cos α
9/16cos²α+cos²α=1
sin α=3/4cos α
25/9cos²α=1
sin α=3/4cos α
cos²α=9/25
sin α=3/4cos α
cos α=√9/25
sin α=3/4cos α
cos α=3/5
sin α=3/5×3/4
sin α=9/20
ctg=4/3
tgα=sinα/cosα
sinα=tgα*cosα=3cosα/4
sin²α+cos²α=1
(3cosα/4)²+cos²α=1
(9/16)*cos²α+cos²α=1
(25/16)cos²α=1
cos²α=16/25
cosα=√(16/25)
cosα=4/5=0,8
sin²α+cos²α=1
sin²α=1-cos²α
sinα=√(1-cos²α)
sinα=√(1-0,8²)
sinα=√0,36
sinα=0,6
ctgα=1/tgα=1/(3/4)=4/3