Jawab:
komposisi fungsi dan fungsi invers
i) gof(x) = g { f(x) }
ii) f⁻¹(x) = y --> f(y) = x
iii) f(x) = (ax + b) / (cx + d) --> f⁻¹ (x) = ( -dx + b)/(cx - a)
Penjelasan dengan langkah-langkah:
(2). jika f(x) = 2x - 5
(gof)(x) = 8x² + 2x - 13
g {f(x)} = 8x² + 2x - 13
g (2x - 5) = 8x² + 2x - 13
y = 2x - 5 -->x = 1/2 (y + 5)
g(y) = 8 { 1/2 (y +5)}² + 2 {1/2 (y +5)} - 13
g(y) = 8 (1/4)(y +5)² + (y+5) - 13
g(y) = 2 (y+5)² +(y+5) - 13
g(x) = 2 (x + 5)² + (x + 5) - 13
g(x) = 2(x² +10x + 25) + x + 5 - 13
g(x) = 2x² +20x + 50 + x - 8
g(x)= 2x² + 21x + 42
(3) f⁻¹ (x) = (2 -3x)/(4x + 5) = (- 3x + 2) / (4x + 5)
f(x) = (f⁻¹)⁻¹= { (- 3x + 2) / (4x + 5)}^-1
f(x) = (5x + 2) / (4x + 3), dengan x ≠ - ³/₄
untuk
f(2x + 1) = { 5(2x+1) + 2 } / { 4 (2x + 1) + 3 }
f(2x + 1) = (10x + 5 +2 ) / (8x + 4 + 3)
f(2x + 1) = (10x + 7)/(8x + 7)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
komposisi fungsi dan fungsi invers
i) gof(x) = g { f(x) }
ii) f⁻¹(x) = y --> f(y) = x
iii) f(x) = (ax + b) / (cx + d) --> f⁻¹ (x) = ( -dx + b)/(cx - a)
Penjelasan dengan langkah-langkah:
(2). jika f(x) = 2x - 5
(gof)(x) = 8x² + 2x - 13
g {f(x)} = 8x² + 2x - 13
g (2x - 5) = 8x² + 2x - 13
y = 2x - 5 -->x = 1/2 (y + 5)
g(y) = 8 { 1/2 (y +5)}² + 2 {1/2 (y +5)} - 13
g(y) = 8 (1/4)(y +5)² + (y+5) - 13
g(y) = 2 (y+5)² +(y+5) - 13
g(x) = 2 (x + 5)² + (x + 5) - 13
g(x) = 2(x² +10x + 25) + x + 5 - 13
g(x) = 2x² +20x + 50 + x - 8
g(x)= 2x² + 21x + 42
(3) f⁻¹ (x) = (2 -3x)/(4x + 5) = (- 3x + 2) / (4x + 5)
f(x) = (f⁻¹)⁻¹= { (- 3x + 2) / (4x + 5)}^-1
f(x) = (5x + 2) / (4x + 3), dengan x ≠ - ³/₄
untuk
f(2x + 1) = { 5(2x+1) + 2 } / { 4 (2x + 1) + 3 }
f(2x + 1) = (10x + 5 +2 ) / (8x + 4 + 3)
f(2x + 1) = (10x + 7)/(8x + 7)