Rozłóż wielomian w, korzystając z trójmianu kwadratowego na czynniki
1. w(x)= 2x^5 - 8x^4
2. w(x)= -1/3x^5 + 8/3x^4 + 3x^3
3. w(x)= x^2 + √2x^2 + x
4. w(x)= (2x^2 - 5x - 3)(x^3 + 2x^2 - 15x)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
W(x) = 2 x^5 - 8 x^4 = 2 x^4 *( x - 4)
z.2
W(x) = ( -1/3) x^5 + (8/3) x^4 + 3 x^3 = - x^3 *( (1/3) x^2 - ( 8/3) x - 3) =
= ( - 1/3) x^3 *( x^2 - 8 x - 9 ) = ( - 1/3) x^3 *( x - 9)*( x + 1)
z.3
W(x) = ?
z.4
W(x) = ( 2 x^2 - 5 x - 3)*( x^3 + 2 x^2 - 15 x) =
delta 1 = ( -5)^2 - 4*2*(-3) = 25 + 24 = 49
p ( delta1) = 7
x1 = ( 5 - 7)/ 4 = - 1/2
x2 = ( 5 + 7) / 4 = 3
więc
2 x^2 - 5 x - 3 = 2*( x + 0,5 )*( x - 3)
-----------------------------------------------
x^3 + 2 x^2 - 15 x = x*( x^2 + 2 x - 15 )
delta 2 = 2^2 - 4*1*( -15) = 4 + 60 = 64
p ( delta 2) = 8
x3 = ( - 2 - 8) / 2 =- 5
x4 = ( - 2 + 8) / 2 = 3
więc
x^3 + 2 x^2 - 15 x = x*( x + 5)*( x - 3)
zatem
W(x) = 2*( x + 0,5)*( x - 3)* x *( x + 5)*( x - 3)
lub
W(x) = 2x*( x + 0,5)*( x + 5)*( x - 3)^2
=====================================