3x3 - 7x2 - 7x +3 = 0 rozwiąż równanie
3x³+3 -7x²-7x=0
3(x³+1) - 7x(x+1)=0
3(x+1)(x²-x+1)- 7x(x+1)=0
(x+1)[3(x²-x+1)- 7x]=0
(x+1)(3x² - 3x+3 - 7x)=0
(x+1)(3x²-10x+3)=0
x+1=0 ∨ 3x²-10x+3=0
x= -1 ∨ Δ=100-4·3·3=100-36=64
√Δ=8
x₁=⅓
x₂=3
3x^3 - 7x^2 - 7x + 3 = 0
3x^3 + 3 - 7x^2 - 7x=0
3(x^3 + 1) - 7x(x + 1)=0
3(x+1)(x^2-x+1) - 7x(x + 1)=0
(x+1)(3(x^2-x+1) - 7x)=0
(x+1)(3x^2-10x+3)=0
x=-1 lub 3x^2-10x+3=0
delta= 100-36=64 => pierwiastek z delty = 8
x=(10-8)/6 =1/3 lub x=(10+8)/6 =3
Odp. x={-1,1/3,3}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3x³+3 -7x²-7x=0
3(x³+1) - 7x(x+1)=0
3(x+1)(x²-x+1)- 7x(x+1)=0
(x+1)[3(x²-x+1)- 7x]=0
(x+1)(3x² - 3x+3 - 7x)=0
(x+1)(3x²-10x+3)=0
x+1=0 ∨ 3x²-10x+3=0
x= -1 ∨ Δ=100-4·3·3=100-36=64
√Δ=8
x₁=⅓
x₂=3
3x^3 - 7x^2 - 7x + 3 = 0
3x^3 + 3 - 7x^2 - 7x=0
3(x^3 + 1) - 7x(x + 1)=0
3(x+1)(x^2-x+1) - 7x(x + 1)=0
(x+1)(3(x^2-x+1) - 7x)=0
(x+1)(3x^2-10x+3)=0
x=-1 lub 3x^2-10x+3=0
delta= 100-36=64 => pierwiastek z delty = 8
x=(10-8)/6 =1/3 lub x=(10+8)/6 =3
Odp. x={-1,1/3,3}