sin^4x-cos^4x=1/2
cos5x=cos(x-pi/3)
cos2x+sin2x+1=0
a)
sin ^4 x + cos ^4 x = 1/2
(sin ^2 x - cos ^2 x)*( sin ^2 x + cos ^2 x) = 1/2
(sin ^2 x - cos ^2 x) * 1 = 1/2
sin ^2 x - cos ^2 x = 1/2
sin ^2 x - [ 1 - sin ^2 x] = 1/2
2 sin ^2 x = 1 + 1/2
2 sin ^2 x = 3/2 / :2
sin^2 x = 3/4
sin x = - p(3)/2 lub sin x = p(3)/2
x = pi/3 + 2 pi *k
---------------------
lub
x = - pi/3 + 2 pi *k , gdzie k liczba całkowita
----------------------
============================================
b)
cos 5x = cos ( x - pi/3)
5x = x - pi/3
5x - x = - pi/3
4x = -pi/3 + 2 pi *k / : 4
x = - pi/12 + (1/2)*pi *k, k - liczba całkowita
====================
c)
cos 2x + sin 2x + 1 = 0
[ cos ^2 x - sin ^2 x] + [2 sin x * cos x ] + [ sin^2 x + cos ^2 x] = 0
2 cos ^2 x + 2 sin x * cos x = 0
2 cos x * [ cos x + sin x ] = 0
cos x = 0 lub cos x + sin x = 0
x = pi/2 + pi *k
================
sin x = - cos x / : cos x
tg x = - 1
x = -pi/4 + pi *k , gdzie k liczba całkowita
==============
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
sin ^4 x + cos ^4 x = 1/2
(sin ^2 x - cos ^2 x)*( sin ^2 x + cos ^2 x) = 1/2
(sin ^2 x - cos ^2 x) * 1 = 1/2
sin ^2 x - cos ^2 x = 1/2
sin ^2 x - [ 1 - sin ^2 x] = 1/2
2 sin ^2 x = 1 + 1/2
2 sin ^2 x = 3/2 / :2
sin^2 x = 3/4
sin x = - p(3)/2 lub sin x = p(3)/2
x = pi/3 + 2 pi *k
---------------------
lub
x = - pi/3 + 2 pi *k , gdzie k liczba całkowita
----------------------
============================================
b)
cos 5x = cos ( x - pi/3)
5x = x - pi/3
5x - x = - pi/3
4x = -pi/3 + 2 pi *k / : 4
x = - pi/12 + (1/2)*pi *k, k - liczba całkowita
====================
c)
cos 2x + sin 2x + 1 = 0
[ cos ^2 x - sin ^2 x] + [2 sin x * cos x ] + [ sin^2 x + cos ^2 x] = 0
2 cos ^2 x + 2 sin x * cos x = 0
2 cos x * [ cos x + sin x ] = 0
cos x = 0 lub cos x + sin x = 0
x = pi/2 + pi *k
================
sin x = - cos x / : cos x
tg x = - 1
x = -pi/4 + pi *k , gdzie k liczba całkowita
==============