Zad 1 Oblicz pierwszy wyraz ciągu geometrycznego , w którym a3= 10 , a5= 1/3.
Zad 2 Suma kolejnych potęg liczby 3 od 3 do potegi 1 do 3 do potegi 9 jest równa...? proszę o pomoc:(
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
q²=1/3:10=1/30
a3/a1=q²
a1=a3/q²
a1=10:1/30=300
2.
a1=3
q=3
n=9
Sn=a1(1-q^n)/(1-q)
Sn=3(1-3^9)/(1-3)=3*(1-19683)/(-2)=3*9841= 29523
z.1
a3 = 10
a5 = 1/3
Korzystamy z wzoru:
an = a1*q^(n-1)
==================
Mamy
a3 = a1*q^2 = 10
a5 = a1*q^4 = 1/3
Dzielimy stronami
a5 /a3 = [ a1 *q^4 ]/[ a1*q^2] = ( 1/3) : 10
q^2 = 1/30
=============
a1*( 1/30) = 10
a1 = 10 / (1/30) = 10* 30 = 300
Odp. a1 = 300
=================
z.2
a1 = 3^1 = 3
a2 = 3^2 = 9
--------------
-------------
a9 = 3^9
a2 : a1 = 9 : 3 = 3
zatem q = 3
Sn = a1*[ 1 - q^n]/[ 1 - q ]
czyli
S9 = 3*[1 - 3^9]/ [ 1 - 3] = 3*[ 1 - 19 683 ]/( - 2) = -1,5 * ( - 19 682 ) = 29 523
Odp. S9 = 29 523
======================