oblicz: (1/2a-1)^2=
(2/3x+3/2y)^2
(-x-1)^2
(x+1)^3
(2x-3)3
(x+1)(x^2-x+1)
(1/2a-1)2 – ¼ a2 - 2∙ ½ ∙1 + 1 = ¼ a2 – a + 1
(2/3 x+3/2 y)2 = 4/9 a2 + 2∙2/3x∙3/2 y + 9/16 y2 = 4/9 a2+ 2xy + 9/16 y2
(-x-1)2 = x2 -2x∙1+ 1 = x2 -2x + 1
(x+1)3 = x3+3∙x2∙1 + 3∙x∙1 + 1 = x3+3∙x2+ 3x +1
(2x-3)3= 8x3- 3∙4x2+ 3∙2x∙9 – 27 = 8x3- 12 x2 + 36 x - 27
(x+1)(x2-x+1) = x3 – x2+ x + x2 – x + 1 = x3 + 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(1/2a-1)2 – ¼ a2 - 2∙ ½ ∙1 + 1 = ¼ a2 – a + 1
(2/3 x+3/2 y)2 = 4/9 a2 + 2∙2/3x∙3/2 y + 9/16 y2 = 4/9 a2+ 2xy + 9/16 y2
(-x-1)2 = x2 -2x∙1+ 1 = x2 -2x + 1
(x+1)3 = x3+3∙x2∙1 + 3∙x∙1 + 1 = x3+3∙x2+ 3x +1
(2x-3)3= 8x3- 3∙4x2+ 3∙2x∙9 – 27 = 8x3- 12 x2 + 36 x - 27
(x+1)(x2-x+1) = x3 – x2+ x + x2 – x + 1 = x3 + 1