Przykłady z wzorów skróconego mnożenia:
(√3-9)2=
(5x+1/2y)2=
(1/2a +1/2b)2=
(1/2x-y2)2=
(2√3+4)2=
(5-3√2)2=
9x2-12x+4=
9x2-6x+1=
x2-6xy+9xy=
(√2-3)( √2+3)=
(4-√5)(4+√5)=
(2√3+7)(2√3-7)=
(√10+√2)2=
(√21+√3) 2=
(√15-√5) 2=
(2√2-√6) 2=
(√21-√20)(√21+20√)=
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(√3-9)2= (√3-9)*(√3-9) = 3 -9√3 -9√3 + 81 = 3 -29√3 + 81
(5x+1/2y)2= (5x + 1/2y) * (5x + 1/2y) = 25x^2 + 2,5xy + 2,5xy + 1/4y2 = 25^2 + 5xy + 1/4y^2
(1/2a +1/2b)2= (1/2a + 1/2b) * (1/2a + 1/2b) = 1/4a^2 + 1/2ab + 1/4b^2
(1/2x-y2)2= (1/2x-y2) * (1/2x-y2) = 1/4x^2 - 1/4xy^2 +y^4
(2√3+4)2=2*3 + 4^2 = 6 + 16 = 22
(5-3√2)2= 5^2 - 3*2 = 25 - 6 = 19
9x2-12x+4= (3x - 2)^2
9x2-6x+1= ( 3x - 1)^2
x2-6xy+9xy= x^2 + 3xy
(√2-3)( √2+3)= 2 +3√2 -3√2 - 9 = 2 - 9 = -7
(4-√5)(4+√5)= 16 + 4√5 -4√5 -5 = 16 - 5 = 11
(2√3+7)(2√3-7) =4*3 +7*2√3 -7*2√3 - 49 = 12 - 49 = 37
(√10+√2)2= (√10+√2) * (√10+√2) = 10 + √10*√2 +√2*√10 +2 = 10 + 2√20 + 2
(√21+√3) 2= (√21+√3) * (√21+√3) = 21 + √21*√3 + √3*√21 + 3 = 21 + 2√63 + 3
(√15-√5) 2= (√15-√5) * (√15-√5) = 15 - √15*√5 - √5*√15 + 5 = 15 - 2√75 +5
(2√2-√6) 2= 4*2 -2√2*√6 - √6*2√2 + 6 = 8 - 4√2*√6 + 6 = √8 - 4√12 + 6
(√21-√20)(√21+20√)= 21 - 20 = 1