" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
A
X² + 4X - 21 = 0;
x=(-b±√(b^2-4ac))/2a ;a = 1; b = 4; c = -21
x=(-(4)±√(4²-4(1)(-21))/2(1)
X = (-4±√(16+84))/2
X = (-4±√(100))/2
X = (-4±(10))/2
X1= (-4 +10)/2 = 3; X2 = (-4 -10)/2 = -7
X1 = 3; X2 = -7.
B. X² + 9X + 20 = 0
x=(-b±√(b^2-4ac))/2a ; a = 1; b = 9; c = 20
x=(-9±√(9²-4(1)(20))/2(1)
X =(-9±√(81-80))/2
X =(-9±√(1))/2
X1 = (-9+1)/2 = -4
X2 = (-9 - 1)/2 = -5
X1 = - 4; X2 = -5.
C) 9X² - 12X + 4 = 0
x=(-b±√(b^2-4ac))/2a; a = 9; b = -12; c = 4
X= (-(-12)±√((-12)²- 4(9)(4)))/2(9)
X = (12)±√(144 - 144))/2(9)
X = (12)±√(0))/2(9)
X = (12)/(18) = 2/3
X = 2/3.
2)
A) X = Numero
Condicion
X² - 3X = 130; X² - 3X - 130 = 0.
x=(-b±√(b^2-4ac))/2a; a = 1; b = -3 ; c = -130
X= (-(-3)±√(3² - 4(1)(-130))/2(1).
X = (3±√(9 + 520))/2
X = (3±√(529))/2
X = (3 ± 23)/2
X1 = (3 + 23)/2 = 13
X2 = (3 - 23)/2 ) = -10.
El numero es 13.
13² - 3(13) = 169 - 39 = 130.
B) X = numero menor; X + 1 = Numero mayor consecutivo.
X² + (X + 1)² = 145
X² + (X² + 2X + 1) = 145
X² + X² +2X + 1 = 145
2X² + 2X - 144 = 0;
2X² + 2X - 144 = 0; Simplificamos por 2; X² + X - 72 = 0
X=(-b±√(b^2-4ac))/2a; a = 1; b = 1; c = -72
X=(-(1)±√(1² - 4(1)(-72))/2(1)
X=(-(1)±√(1² - 4(1)(-72))/2
X =(-1±√(1 + 288)/(2)
X = (-1±√(289)/(2)
X = (-1 ± 17/(2)
X1 = (-1 +17)/2 = 8
X2= (-1 - 17)/2 = - 9
El numero es 8.
8² + (8+1)² = 64 + 81 = 145