Rozwiąż równanie a)sinx=|x|/x
b)cos x-|x|/2=1
a)
sinx = IxI/x
D. x =/= 0
x > 0 ---> sinx = x/x =1
x =pi/2 + 2kpi
k e {0,1,2,3,.....}
x < 0 ---> sinx = -x/x =-1
x = -pi/2 - 2kpi
k e {0,1,2,3,......]
b)
cos(x- IxI/2) =1
x >= 0 ---> (x-x)/2 = 0
cos 0 =1
x < 0 ---> (x+x)/2 = x
cosx =1
x = -2kpi
k e N
x e {......, -4pi, -2pi} U < 0, +oo)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
sinx = IxI/x
D. x =/= 0
x > 0 ---> sinx = x/x =1
x =pi/2 + 2kpi
k e {0,1,2,3,.....}
x < 0 ---> sinx = -x/x =-1
x = -pi/2 - 2kpi
k e {0,1,2,3,......]
b)
cos(x- IxI/2) =1
x >= 0 ---> (x-x)/2 = 0
cos 0 =1
x < 0 ---> (x+x)/2 = x
cosx =1
x = -2kpi
k e N
x e {......, -4pi, -2pi} U < 0, +oo)