Punkty wspólne parabol y=-x^2+2x+8 i y=1/2x^2-x+7/2 oraz wierzvchołki tych parabol tworzą czworokąt. Oblicz pole tego czworokąta.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
y= - +2x+8
delta=4- 4*(-1)*8
delta=36
=6
=
=4
=
=-2
p=
p=1
q=
q=9
y= - x+
delta= 1- 4* *
delta= -6
p=1
q=
q=3
teraz narysuj te dwie parobole bo masz już wszystkie dane
ten czworokąt co ci wyszedł podziel na 2 trójkąty poziomo(w punkcie przecięcia dwóch parabol)
Pc=8+4=12j.
y = - x^2 + 2x + 8
a = -1 , b = 2 , c = 8
p = -b /(2a)
p = -2/(-2) = 1
q = - 1^2 + 2*1 + 8 = -1 + 2 + 8 = 9
-------------------------------------------
y = (1/2) x^2 - x + 7/2
p = 1/(2*0,5) = 1/2 = 1
q = (1/2)*1^2 - 1 + 7/2 = (1/2) - 1 + 7/2 = 4 - 1 = 3
---------------------------------------------------------------
Punkty wspólne parabol
- x^2 + 2x + 8 = (1/2) x^2 - x + 7/2 / * 2
-2 x^2 + 4x + 16 = x^2 - 2x + 7
3 x^2 - 6x - 9 = 0 / : 3
x^2 - 2x - 3 = 0
---------------------
delta = (-2)^2 - 4*1*(-3) = 4 + 12 = 16
x1 = [ 2 - 4]/2 = -2/2 = - 1
x2 = [ 2 + 4]/2 = 6/2 = 3
y1 = - (-1)^2 +2*(-1) +8 = -1 -2 + 8 = 5
y2 = - 3^3 +2*3 + 8 = -9 + 6 + 8 = 5
-----------------------------------------
Mamy zatem punkty:
A = (1; 3)
B = (3; 5)
C = ( 1; 9)
D = ( -1 ; 5)
-->
AB = [3 -1; 5 - 3] = [ 2;2]
-->
DC = [1 -(-1); 5 - 9] = [2; -4]
-->
AD = [ -1 -1; 5 -3] = [ -2; 2]
-->
BC = [1 -3; 9 -5] = [-2; 4]
zatem
IABI^2 = 2^2 + 2^2 = 4 + 4 = 8
oraz
I AD I^2 = (-2)^2 + 2^2 = 4+4 = 8
zatem I AB I = I AD I
=====================
IBC I^2 = (-2)^2 + 4^2 = 4 + 16 = 20
oraz
I DC I^2 = 2^2 + (-4)^2 = 4 + 16 = 20
zatem I BC I = I DC I
====================
Czworokąt ABCD jest deltoidem o przekątnych AC oraz BD
Mamy
I AC I = 9 - 3 = 6
I BD I = 3 - (-1) = 4
Pole deltoidu
P = 0,5* I AC I *I BD I = 0,5*6*4 = 12
==================================