September 2018 1 12 Report

Oblicz obwód i pole trójkąta ABC, jeśli (wektor) BC = [-4;-2] CA = [0;6]

Prosze sprawdzcie czy to dobrze.

A = (x₁;y₁)

B = (x₂;y₂)

C = (x₃;y₃)

BC = [-4;-2]

CA = [0;6]

BA = [x₁-x₂;y₁-y₂]

CA = [x₁-x₃;y₁-y₃]

BC = [x₃-x₂;y₃-y₂]

x₃-x₂=-4

x₁-x₃=0

x₃-x₂=-4

x₃=x₃

x₃-x₂=-4

y₃-y₂=-2

y₁-y₃=6

y₃-y₂=-2

-y₃=6-y₁/:(-1)

y₃-y₂=-2

y₃=y₁-6

y₁-6-y₂=-2

y₃=y₁-6

y₁-y₂=4

y₃=y₁-6

BA = [x₁-x₂;y₁-y₂]

BA = [-4;4]

|BC| = 2√5

|CA| = 6

|BA| = 4√2

Obw=|BC|+|CA|+|BA|=2√5+6+4√2

P=½det|BC;BA|

P=½|(-4)*4-(-4)*(-2)|

P=½|-16-8|

P=½*24

P=12


Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.