1)Oblicz pole koła wpisanego w trójkąt o bokach: 13,13,10.
2) Oblicz pole koła wpisanego w romb, o przekątnych 6 cm i 8 cm.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
a = 10cm
b = 13cm
(1/2a)^2 + h^2 = b^2
5^2 + h^2 = 13^2
h^2 = 169 - 25
h^2 = 144
h = 12cm ----------- wysokość trójkąta
P = 1/2 * a * h = 1/2 * 10 * 12 = 60cm^2
r = 2P / (a + b + c) --------- wzór na promien koła wpisanego w trójkąt
r = (2 * 60) / (10 + 13 + 13)
r = 120 / 36
r = 20/6
r = 10/3 cm
P = π r²
P = π * (10/3)²
P = 100/9 π
P = 11 i 1/9 π cm² ----------- odpowiedź
2.
d1 = 6cm
d2 = 8cm
(1/2d1)^2 + (1/2d2)^2 = a^2
a^2 = 3^2 + 4^2
a^2 = 9 + 16
a^2 = 25
a = 5cm ---------- bok rombu
P = 1/2 * d1 * d2 = 1/2 * 6 * 8 = 24cm^2 ---------- pole rombu
r = 2P / (a + a + a + a)
r = (2 * 24) / (4 * 5)
r = 48/20
r = 24/10
r = 2,4cm
P = π r²
P = π * 2,4²
P = 5,76 π cm² ----------- odpowiedź