[ctgα(1 + tg²α)]/(1 + ctg²α) = tgα
korzystam tgα*ctgα=1→tgα=1/ctgα
L=(ctgα+ctgα*tg²α)/(1+ctg²α)=
=(ctgα+ctgα*tgα*tgα)/(1+ctg²α)=
=(ctgα+tgα)/(1+ctg²α)=
=(ctgα+tgα)/(ctgα*tgα+ctg²α)=
=(ctgα+tgα)/ctgα(tgα+ctgα)=
=1/ctgα=
=tgα=P
L=P czyli jest tożsamością trygonometryczną:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[ctgα(1 + tg²α)]/(1 + ctg²α) = tgα
korzystam tgα*ctgα=1→tgα=1/ctgα
L=(ctgα+ctgα*tg²α)/(1+ctg²α)=
=(ctgα+ctgα*tgα*tgα)/(1+ctg²α)=
=(ctgα+tgα)/(1+ctg²α)=
=(ctgα+tgα)/(ctgα*tgα+ctg²α)=
=(ctgα+tgα)/ctgα(tgα+ctgα)=
=1/ctgα=
=tgα=P
L=P czyli jest tożsamością trygonometryczną: