Znajdz sume n-wyrazow (n=10) ciagu geometrycznego malejacego, dla ktorego suma pierwszych trzech wyrazow wynosi 7, a ich iloczyn wynosi 8.
Prosze o podanie rozwiazania.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a1 + a1*q + a1*q^2 = 7
a1*( a1*q)*(a1*q^2) = 8
-------------------------------
(a1)^3 * q^3 = 8
(a1*q)^3 = 8
a1*q = 2 => q = 2/a1
Wstawiam do 1) równania
a1 + 2 + a1*[ 2/a1]^2 = 7
a1 + a1*[4/(a1)^2 ] = 5
a1 + 4/a1 = 5 / * a1
(a1)^2 + 4 = 5 a1
(a1)^2 - 5 a1 + 4 = 0
-----------------------------
delta = (-5)^2 - 4*1*4 = 25 - 16 = 9
p(delty) = 3
a1 = [ 5 - 3]/2 = 2/2 = 1 lub a1 = [ 5 + 3]/2 = 8/2 = 4
wtedy
q = 2/1 = 2 lub q = 2/4 = 1/2
Ciąg geometryczny jest malejący, gdy a1 = 4 i q = 1/2
===================================================
Korzystamy z wzoru na sumę ciągu geometrycznego:
Sn = a1*[1 - q^n]/ [ 1 - q ]
Mamy
n = 10
a1 = 4
q = 1/2
zatem
S10 = 4*[ 1 - (1/2)^10 ]/[ 1 - 1/2] = 4*[1 - 1/1024]/( 1/2) =
= 8* [ 1023/1024] = 1023/128
Odp. S10 = 1023/128 = 7 127/128
====================================